The invention relates to an apparatus and to devices for the determination of food texture and for the advanced characterization of its behaviour upon mechanical strain. According to the invention, the apparatus comprises a screw (1), a nut (2), a lower jaw (4) on which an incremental position sensor (9) is fixed, an upper jaw (10) containing a dynamometric cell (11), a metal stand (20), two electrical connectors (22 and 23), a computer unit (25), on the two jaws (4 and 10) there being attachable by simple operations, using two knurled screws (16 and 17), a device for determining resiliency and fracturability of a thin piece of food, a device for determining resiliency of a relatively thick solid elastoplastic piece of food or for determining the fragility of a relatively thick solid piece of food, a device for determining the food behaviour upon mastication, the mastication resistance and the food adhesion, a device for determining the food hardness, the behaviour thereof to penetration as well as the penetration work and a device for determining the viscosity and the flowing behaviour of viscoplastic food.
Abstract

The invention relates to a machine for manufacturing correction wooden plugs meant to replace black falling knots from the timber with a view to improving the aesthetic quality thereof. According to the invention, the machine has a system for milling the correction plug and a circular saw for cutting the finished plug from a cylindrical wooden blank (1), where, for a perfect vertical axial alignment of the cylindrical wooden blank (1) with the symmetry and rotation axis of a milling cutter (22), as well as for providing an advanced parallelism between the bottom face of the blank (1) and the plane face of a metal table (9), there is employed a three-point clamping system achieved with two pistons (7 and 8) of two pneumatic cylinders (5 and 6) and an internal wall of a cylindrical guiding and clamping bushing (2), the axes of the three clamping points of the cylindrical wooden blank (1); forming an angle of 120 DEG with each other.
Abstract

The invention relates to a pneumatic vice employed in automatically clamping and releasing long wood blanks to be delivered by cutting with a view to being subsequently machined by turning or milling using various equipments. According to the invention, the vice exhibits an assembled structure consisting of a pneumatic cylinder (1), a piston (2), a rod (3) with a threaded end which drives a cylindrical rack (5) into a linear motion, engaging with a toothed cylindrical pinion (6) coupled to a bevel pinion (7) which engages, in its turn, with a toothed crown (8) of the lathe chuck device, the said linkage, depending on the moving direction of the piston (2) which is controlled, in its turn, by an electronic programming unit (18) by means of an electropneumatic valve (19), accomplishing the clamping/releasing function by pressing or spacing apart some dies (10) onto or from a blank (11); to be machined.
Abstract

The invention relates to a device for manufacturing wooden plugs meant to replace black falling knots from the timber. According to the invention, the device produces some plugs (17) from some blank discs (13) using a mechanical structure consisting of a cylindrical body (1) which has at its top part a Morse cone (2) fixed onto a vertical shaft (3) of a machine for wood or metal machining, while at its bottom part it has a milling cutter (4) provided with a tool (5) for bevelling at 45 DEG and a hollow cylindrical body (6) inside which a resiliently pressing cylindrical rod (10) can move axially, said rod being provided with a limiting metal pin (11) and a compression spring (12).
Abstract

The invention relates to a vertical boring and turning mill for manufacturing cylindrical wooden disks. According to the invention, the vertical mill for automatically manufacturing correction wooden plugs (2) starting from some cylindrical raw wood disks (1), has a kinematic turning structure comprising an electric motor (4), a hollow shaft (12) wherein there may axially move a rotating axially mobile bolt (14), pressed, in its turn, by a compression spring (13), a rotating cylindrical rod (24), some pneumatic tongs (16), two clamping-detaching arms (17), a pneumatic cylinder (18), equipped with two pistons (19), another pneumatic cylinder (21), provided with a pneumatic piston (22), whereon there is mounted a rotating cylindrical rod (24), a profiled turning tool (20), a vertical supply device (25) for the raw cylindrical disks (1) which are to be processed, a screw (26); for positioning the vertical supply device (25), a pneumatic nozzle (27), three electro-valves (28, 29, 30) and an electronic unit (31).
Autori: Gutt Gheorghe [RO]; Gutt Sonia [RO]
Clasificarea internațională: G01L1/00; G01L5/00
Prioritate: RO20110000340 20110412

Rezumat

Invenția se referă la un dispozitiv de poziționare verticală, strângere și rigidizare, pe suprafața materialului încercat, a diverselor durimetre portabile, destinate încercărilor mecanice in situ a tablelor și a profilurilor metalice. Dispozitivul conform învenției folosește o structură mecanică de tip clește, formată, la rândul ei, dintr-o bucă (1) detășabilă, pe care se fixează, cu două șuruburi (4 și 5), corpul (6) unei sonde durimetriche, un suport (7) de sprijin pentru semifabricatul (8) încercat, o piuliță (9) rândalinată de blocare, un bolt (10) de blocare a poziției, un canal (C) pentru asigurarea cursei, un orificiu (Oₙ) cilindric și un buton (15) cu arc de reducere, pentru blocarea cleștelui la forța maximă de strângere, precum și niște suporturi (16, 17 și 18) de sprijin și rigidizare, folosite la încercarea semifabricatelor de diverse geometrii, figura 1.

Abstract

The invention relates to a device for the vertical positioning, clamping and reinforcing, on the tested material surface, of various portable hardness testers meant for in situ mechanical testing of sheet metal and metal profiles. According to the invention, the said device uses a pliers-type mechanical structure consisting, in its turn, of a detachable bushing (1) whereon there is fastened, by two screws (4 and 5), the body (6) of a hardness testing probe, a supporting bracket (7) for the tested semi-finished product (8), a blocking knurled nut (9), a position blocking bolt (10), a channel (C) for enabling the travel, a cylindrical orifice (Oₙ) and a reducing spring button (15) for blocking the pliers at the maximum clamping force, as well as some supporting and reinforcing brackets (16, 17 and 18) used for testing semi-finished products of various geometries, figure 1.
Rezumat

Invenția se referă la un aparat portabil, pentru determinarea compoziției chimice a biofilmelor și pentru măsurarea grosimii acestora. Aparatul conform invenției este alcătuit dintr-o sondă fotoacustică, legată printr-un cablu (3) electric, la o unitate (4) electronică de prelucrare a datelor, în care sonda fotoacustică este alcătuită dintr-un corp (5) al sondei prevăzut, la exterior, cu un înveliș (6) din cauciuc silionic, iar la interior având montate două fibre (7 și 8) optice care strâpung un senzor (10) piezoelectric montat la partea inferioară a sondei, cele două fibre optice fiind fixate în interior cu ajutorul unui material (9) polimeric de umplutură, iar la exterior fiind conectate astfel: una dintre fibre (7) - la o diodă (11) laser în impuls, iar cealaltă fibră (8) - la un detector (13) fotometric de tip Diode-Array, figura 1.

Abstract

The invention relates to a portable apparatus for determining the chemical composition of biofilms and measuring the thickness thereof. According to the invention, the apparatus comprises a photoacoustic probe connected by means of an electric cable (3) to an electronic data processing unit (4), where the photoacoustic probe consists of a probe body (5) which is provided outside with a silicone rubber jacket (6), and which has inside some optical fibers (7 and 8) which pierce a piezoelectric sensor (10) mounted at the lower side of the probe, the two optical fibers being fixed inside with a polymer filling material (9) and outside the optical fibers being connected as follows: one of the fibers (7) to a pulse laser diode (11) and the other fiber (8) to a photometric Diode-Array detector (13), figure 1.
Invenţia se referă la un echipament automat, destinat realizării unor solicitări mecanice de suprafață asupra peretelui interior al ţevilor metalice, care preia și interpretează răspunsul materialului încercat, în vederea caracterizării avansate a acestuia. Echipamentul conform invenției este constituit dintr-o structură portabilă, formată dintr-un corp (2) metallic, fixat pe o tijă (3) telescopică, un micromotor (5) electric, prevăzut cu un reductor (7) de turație și un sistem de transformare a mișcării de tip șurub (8) - piuliță (9), un sistem (10 și 11) de pârghii, o talpă (12), un corp (13) de presare, două arcuri (14 și 15) spiralate de compresiune, un ghidaj (16) cu bile, un penetrator (17) din diamant de tip Vickers, o tijă (18) cilindrică portpenetrator, o celulă dinamometrică, formată dintr-un arc (19) lamelar și patru senzori (20) electrorezistivi, legați în puncte Wheatstone. Principiul de lucru al echipamentului se bazează pe interpretarea mărimii și a caracteristicilor curbei de încărcare-descărcare a penetratorului (17), realizată în coordonate: valori de forță (F) de reacție a materialului încercat în funcție de timpul (t) total de încărcare-descărcare., figura 1.

Fig. 1.
Invenția se referă la un senzor pentru determinarea concentrației de apă dintr-un gaz sau dintr-un amestec de gaze. Senzorul conform invenției este alcătuit dintr-o carcasă (1) din oțel inoxidabil, în care sunt montați doi electrozi (2 și 3) plan paraleli, sub formă de disc, din platină sau din aur, care formează armăturile unui condensator electric, printre cei doi electrozi (2 și 3) plan paraleli fiind trecut în sistem by-pass un flux laminar, cu debit constant și cunoscut, de gaz de analizat, provenit dintr-o conductă principală, condensatorul electric făcând și el parte, la rândul lui, dintr-un circuit oscilant de tip L-C, a cărui frecvență (f) de oscilație se abate de la o frecvență (f₀) de rezonanță proporțional cu variația valorii permittivității (ɛ) dielectrică a mediului gazos care se găsește la un moment dat între armăturile condensatorului, abaterea de frecvență (Δf) rezultată fiind, la rândul ei, proporțională cu concentrația (c) volumică a vaporilor de apă din gaz sau din amestecul de gaze, figura 1.
Inventia se refera la un dispozitiv optic, destinat vizualizarii si alegerii locului de pe peretele interior al unei tevi metalice asupra carea urmeaza sa se efectuea o incercare mecanica de patrundere cu un penetrator tip Vickers din diamant. Dispozitivul conform inventiei, care acționează asupra peretelui (27) interior al tevi metalice, este constituit dintr-un corp (1) metallic filetat, o oglinda (2) miniaturală cu reflexie totală, o fibră (3) optică specială, multiplă, compusă, la rândul ei, din mai multe fibre (4) optice de iradiere, dispuse radial în jurul unei alte fibre (5) optice centrale, folosite pentru transmiterea informaţiei optice imagistice către o cameră video miniaturală, dispozitivul optic fiind înfiletat, la rândul lui, pe un echipament semiautomat, pentru încărcarea progresivă și controlată a unui penetrator (12) de diamant de tip Vickers, figura 1.

Abstract

The invention relates to an optical device meant for visualizing and selecting the site on the inner wall of a metal pipe, which is to be subjected to a mechanical penetration test with a Vickers type diamond penetrator. According to the invention, the device which acts upon the inner wall (27) of a metal pipe consists of a threaded metal body (1), a miniature total-reflection mirror (2), a special multiple optical fiber (3) consisting, in its turn, of several irradiation optical fibers (4), radially arranged around another central optical fiber (5), used for transmitting the image optical information to a miniature video camera, the optical device being screwed, in its turn, into a semiautomatic equipment for progressively and controlledly charging a diamond penetrator (12) of Vickers type, figure 1.
11. BREVET RO125798 / 2013
Biosenzor

Autori: Gutt Sonia [RO]; Gutt Gheorghe [RO]; Gutt Andrei [RO]
Clasificarea internațională: G01N21/76; G01N33/49; G01N33/50
Prioritate: RO20080000285 20080417

Rezumat

PATENT RO125798/ 2013
Biosensor

Abstract

Fig. 1.
12. BREVET RO125792 / 2013
Sistem vâscozimetric industrial

Autori: Gutt Gheorghe [RO]; Gutt Sonia [RO]; Gutt Andrei [RO]
Clasificarea internațională: G01N11/14; G01N11/16
Prioritate: RO20080000289 20080417

Rezumat

PATENT RO125792 / 2013
Industrial viscometric system

Abstract

Fig. 1.
Abstract

The invention relates to an interferometric system meant to measure some layer masses and/or thicknesses of very low values. According to the invention, the interferometric system comprises a radiation source (1) of laser diode type, an optical fiber (2) which is divided by means of an optical divider (3) into an optical fiber (4) for transmitting a reference light beam and an optical fiber (5) for transmitting a working beam, an optical prism (6) with a structure specific to surface plasmonic resonance, a focus lens (11), an optical fiber (12) for the light beam transmission, an optical accumulator (13), another optical fiber (14), a Michelson interferometer comprising, in its turn, a semi-transparent mirror (15), a mobile mirror (16) with total reflection moved by a linear piezoelectric motor (17), a fixed mirror (18) with total reflection and a photoelectric detector (19), a central electronic unit (21) and a computation unit (22) provided with a computation program for data acquisition and processing, figure 1.

Fig. 1.
Rezumat

Invenția se referă la un condensator variabil, cu posibilitatea modificării capacității electrice, cu viteză mare. Condensatorul conform invenției se compune din două armături (1 și 2) metalice, plan paralele, o armătură (2) fiind lipită nedemontabil de una dintre fețele plane ale unui actuator (3) piezoelectric, liniar, ce are rolul de a modifica distanța între armături (1 și 2), după o lege sinusoidală, în scopul modificării, cu mare viteză a capacității electrice a condensatorului, iar cealaltă armătură (1) fiind lipită de un material (4) izolator electric; întreaga structură descrisă este turnată într-o carcasă (5) polimerică, împreună cu niște pini (6) de contact electric, rezultând o structură etanșă, de dimensiuni mici, sub formă de cip electronic, figura 1.

Abstract

The invention relates to a variable capacitor capable of high-speed change of electric capacity. According to the invention, the capacitor comprises two plane parallel metal coatings (1, 2), where one coating (2) is undetachably attached to one of the plane faces of a linear piezoelectric actuator (3) intended to modify the distance between the two coatings (1, 2) according to a sine law, with a view to achieving high-speed change of the capacitor electric capacity, while the other coating (1) is attached to an electrically-insulating material (4); the said entire structure is cast in a polymeric casing (5) together with some electric contact pins (6), thereby resulting a low-sized tight structure as an electronic chip, figure 1.
Rezumat

Prezentă învenție se referă la un biocip optic pentru avertizarea degradării cărnii de porc și de vită, pentru avertizarea pe cale optică a consumatorului asupra degradării cărnii, constând dintr-un disc biosenzorial (D) de unică folosință, plasat pe peretele interior al unui ambalaj polimeric (2) vidat, în care este ambalată carne (1), disc care dă o reacție de culoare roșie cu amoniacul din apă amoniacală, ce reprezintă produsul specific de degradare al cărnii. Conform învenției, discul biosenzorial (D) este alcătuit dintr-o pulbere (3) submicrometrică de dioxid de titan, insolubilă și netoxică, cu rol de catalizator și matrice suport, în care se amestecă o pulbere (4) fină, netoxică, de clorură de argint, o membrană polimerică (6) semipermeabilă, lipită prin termosudare peste un disc (D), pe peretele interior al pungii (1), figura 1.

Abstract

The present invention relates to an optical biochip for warning on the pork and beef spoilage, for optically warning the consumers on the meat spoilage, consisting of a disposable biosensorial disk (D), located on the interior wall of a vacuumed polymeric packing (2) in which the meat (1) is packed, said disk having a red colour reaction with the ammonia in the ammoniacal water, which is the specific product in meat spoilage. According to the invention, the biosensorial disk (D) consists of a submicrometric insoluble and non-toxic powder (3) of titan dioxide, having the role of catalyst and support matrix, where there are mixed a fine non-toxic powder (4) of silver chloride, a semi-permeable polymeric membrane (6), attached by thermal welding onto the disk (D), on the interior wall of the bag (1), figure 1.
Prezența invenție se referă la o metodă pentru avertizarea optică a consumatorului asupra degradării cărnii (5) care este ambalată în pungi etanșe polimerice (4), constând din utilizarea unui disc (D) biosenzorial de unică folosință, cu diametrul de câțiva milimetri și cu grosimea de câteva sute de micrometri, obținut prin presare într-o matriță, și format dintr-un material pulverulent (1), insolubil în apă și netoxic, cu rol de matrice suport, amestecat cu un reactant chimic de culoare (2), netoxic, pulverulent sau geliform, și o membrană (3) semipermeabilă, care permite pătrunderea prin porii săi numai a produselor specifice de degradare. Avertizarea privind degradarea cărnii are loc prin colorarea discului (D) care este vizibil prin peretele pungii (4), figura 1.

Abstract

The present invention relates to a method for optically warning the consumer on the spoilage of the meat (5) which is packed in sealed polymeric bags (4), consisting in using a disposable biosensorial disk (D), with a diameter of a few millimeters and a thickness of a few hundreds of micrometers, obtained by pressing in a die and made of a water-insoluble and non-toxic pulverous material (1), with role of support matrix, mixed with a pulverous or gel-like non-toxic coloured chemical reagent (2) and a semi-permeable membrane (3), which only allows the penetration of the specific spoilage products, through its pores. The warning on the meat spoilage occurs by the colouration of the disk (D) which is visible through the wall of the bag (4), figure 1.
Rezumat

Prezentă învenție se referă la un echipament pentru urmărirea cineticii chimice și de creștere in situ a biofilmelor, dintr-un mediu lichid de curgere, constând dintr-o celulă paralelipipedică de curgere (1), prin care se deplasează un mediul lichid (9), și pe al cărei perete (5) se formeză și crește în grosime un biofilm analizat, perete care constituie fața unei prisme optice trapezoidale (4), prin care se realizează iradierea monocromatică de excitare cu ajutorul unui laser pulsator (3), pentru măsurarea indicelui de refracție fiind folosit un detector fotoelectric (6) Diode-Array, lipit de peretele prisme optice (4), iar pentru analiza spectrală fotoacustică, este folosit un senzor piezoelectric (7), procesarea datelor fiind făcută de o unitate electronică (8), figura 1.

Abstract

The present invention relates to an equipment for following the chemical kinetics and bio-films grow in a flowing liquid medium, consisting of a parallelipipedal flowing cell (1) through which there passes a liquid medium (9) and on whose wall (5) a bio-film to be analyzed is formed and increases in thickness, and the wall represents the side of a trapezoidal optical prism (4) through which there is performed the mono-chromatic excitation irrradiation by means of a pulsating laser (3), for measuring the refraction index there is used a Diode-Array photo-electric detector (6), attached to the wall of the optical prism (4), and for the photo-acoustic spectral analysis a piezoelectric sensor (7) is used, the data processing being performed by an electronic unit (8), figure 1.
Rezumat

Invenția se referă la un spectromicroscop Raman portabil, care permite efectuarea de analize calitative și cantitative in situ prin spectrometrie Raman, concomitent cu urmărirea și înregistrarea videomicroscopică a zonei examinate. Spectromicroscopul conform invenției este o structură modulară formată dintr-un analizor (R) Raman și o unitate (V) video, montate într-o carcasă comună, precum și dintr-o sondă (S) optică externă, conectată prin niște fibre optice (F) la analizorul (R) Raman și la unitatea (V) video, în care analizorul (R) Raman este alcătuit dintr-o sursă (1) laser, o unitate (2) spectrometrică, prevăzută cu rețea de difracție fixă și detector de tip Diode-Array, și o unitate (3) electronică de prelucrare date; unitatea (V) video este alcătuită dintr-o sursă (4) de radiație policromatică în domeniu vizibil, un sistem (5) video cu detector CCD și o unitate (6) electronică de prelucrare date, iar sonda (S) externă este alcătuită dintr-un corp (7) metallic, prevăzut, la partea inferioară, cu un terminal (8) cilindric ce are infiletat la extremitate un obiectiv (9) optic, iar la partea superioară intră un pachet de patru fibre optice, dintre care o fibră optică (10), ce se divide în interiorul corpului (7) în șase fibre optice (11), aduce radiația laser de excitație Raman spre o probă (12) de analizat, o altă fibră optică (13), ce se divide în interiorul corpului (7) în șase fibre optice (14), aduce radiația policromatică de iluminare spre proba (12) de analizat, iar o altă fibră optică (15) transmite informația optică spectrală și informația optică video, prin intermediul a două fibre optice (16 și 17) rezultate prin divizare, spre analizorul (R) Raman și, respectiv, spre unitatea (V) video, în interiorul corpului (7), pe traseul fibrei optice (16), este montat un filtru (18) optic de interferență, care elimină linia spectrală de emisie a laserului din spectrul Raman, figura 1.
Abstract

The invention relates to a portable Raman spectral microscope permitting in-situ qualitative and quantitative assays to be performed by Raman spectral microscopy, while monitoring and recording the analyzed zone by video microscopy. According to the invention, the spectral microscope is a modular structure comprising a Raman analyzer (R) and a video unit (V) mounted in a common housing, as well as an external optical probe (S) connected to the Raman analyzer (R) and the video unit (V) by means of some optical fibers (F), where the Raman analyzer (R) consists of a laser source (1), a spectrometric unit (2) provided with a fixed diffraction grating and a diode-array detector, and an electronic data processing unit (3), the video unit (V) consists of a source (4) of polychromatic radiation in the visible range, a video system (5) with CCD detector and an electronic data processing unit (6), and the external probe (S) consists of a metal body (7) provided at its lower part with a cylindrical terminal (8) having screwed at one extremity an optical lens (9) and accommodating at its upper part a packet of four optical fibres of which one optical fiber (10) split inside the body (7) into six optical fibres (11) brings the Raman excitation laser radiation to a sample (12) to be analyzed, another optical fibre (13) split inside the body (7) into six optical fibres (14) brings the illumination polychromatic radiation to the sample (12) to be analyzed and another optical fibre (15) transmits the spectral optical information and the video optical information, by means of two optical fibres (16 and 17) resulting by splitting, to the Raman analyzer (R) and to the video unit (V), respectively, an interference optical filter (18) being mounted inside the body (7), on the path of the optical fibre (16), for eliminating the spectral emission line of the laser from the Raman spectrum, figure 1.
Rezumat

Invenția se referă la un aparat de laborator, pentru determinarea tensiunii superficiale a lichidelor, în regim dinamic. Aparatul conform invenției este alcătuit dintr-un corp (1) metallic, în care sunt montate un magnet (2) și o bobină (3) electrică, înfășurată pe un singur rând de spire, pe un suport (4) cilindric nemetalic și suspendată elastic de o membrană (5) metallică, pe care este montat fix un sistem optoelectronic, format dintr-o lentil (6) optică plan convexă și un senzor (8) video de tip CCD, echipamentul electrodinamic, format din magnet (2) și bobină (3), fiind conectat prin niște cabluri electrice și printr-un conector (9), la o unitate (10) electronică care conține un oscilator și un sistem de prelucrare și achiziție date, figura 1.

Abstract

The invention relates to a laboratory apparatus intended to determine the surface tension of liquids under dynamic conditions. According to the invention, the apparatus consists of a metal body (1) wherein there are mounted a magnet (2) and an electric coil (3) wound in a single row of turns, on a non-metal cylindrical support (4), and resiliently suspended on a metal membrane (5) on which there is fixedly mounted an optoelectronic system comprising a plano-convex optical lens (6) and a CCD-type video sensor (8), the electrodynamic equipment, comprising the magnet (2) and the coil (3), being connected by electric cables/connector (9) to an electronic unit (10) comprising an oscillator and a data acquisition and processing system, figure 1.
Rezumat

Invenția se referă la un procedeu și la un aparat pentru controlul nedistructive al alimentelor, prin ambalajul lor transparent, de natură polimerică sau din sticlă. Procedeu conform invenției constă în scanarea optică, nedistructive, a unei etichete (24) ce conține codul de bare al unui produs (22) alimentar, examinat, urmată de scanarea produsului (22) alimentar din interiorul unui ambalaj (23) transparent și, după caz, și de scanarea suprafeței unui biocip (16) indicator, rezultatele fiind valorificate automat printr-un soft ce corelează datele de identificare ale produsului (22) alimentar, inscripționate în codul de bare, cu informațiile spectrale Raman calitative și cu informațiile spectrale Raman semicantitative.

Aparatul conform invenției este compus dintr-un corp (1) ce conține o unitate electronică centrală, o diodă (10) laser, folosită pentru excitare spectrală Raman, un spectrometru (11) miniatural cu rețea de difrație fixă și detector diode Array, un filtru (12) optic de interferență, o diodă (13) laser pentru citirea codului de bare, cu emisie în domeniul spectral roșu, un cititor (14) de cod de bare, un monocromator (15) optic, cu leduri și fibre optice, o fotodiodă (18) pentru conversia semnalului optic reflectat de un biocip (16); un contact (K₁) electric asigură pornirea/oprirea alimentării electrice a diodei (13) laser, un alt contact (K₂) electric asigură pornirea/oprirea alimentării electrice a diodei (10) laser și un alt contact (K₃) electric asigură pornirea/oprirea alimentării electrice a ledurilor din monocromatorul (15) optic; transmisia radiațiilor este asigurată de către un pachet (19) de fibre optice, o lentilă (20) optică de focalizare și o sticlă (21) optică, plană de închidere, iar prin intermediul unui calculator (7) portabil și al unei interfețe de tip USB, se asigură procesarea supraordonată a datelor și totodată alimentarea electrică a optoelectronicii din corpul (1) aparatului, figura 1.
Abstract

The invention relates to a process and an apparatus for the non-destructive control of food, through its transparent polymeric or glass package. According to the invention, the process comprises the non-destructive optical scanning of a tag (24) which contains the bar code of a food product (22) to be tested, followed by the scanning of the food product (22) wrapped in a transparent package (23) and, where appropriate, the scanning of the surface of an indicator biochip (16) the results being then automatically used by means of a software which correlates the identification data of the food product (22), as entered in the bar code, with the qualitative Raman spectral information and the semiquantitative Raman spectral information. The apparatus claimed by the invention consists of a body (1) which contains a central electronic unit (9), a laser diode (10) used for Raman spectral excitation, a miniature spectrometer (11) with fixed diffraction network and diode array detector, an interference optical filter (12), a laser diode (13) for reading the bar code with emission in the red spectral range, a bar code reader (14), an optical monochromator (15) with LEDs and fiber optics, a photo diode (18) for the conversion of the optical signal reflected by a biochip (16); an electric contact (K) provides for switching the power supply of the laser diode (13) on/off, another electric contact (K) provides for switching the power supply of the laser diode (10) on/off and another contact (K) provides for switching on/off the power supply of the LEDs within the optical monochromator (15); the transmission of radiation is ensured by a fiber optic bundle (19), an optical focusing lens (20) and a closing optical sheet glass (21), while, by means of a portable computer (7) and a USB interface, there are provided the superset data processing and, in the same time, the power supply of the optoelectronics within the apparatus body (1), figure 1.
Rezumat

Invenția se referă la un sistem optoelectric destinat utilizării combinate, în același timp și în același loc, a procedeelor de rezonanță plasmonică și de spectrometrie fotoacustică, pentru analiza chimică calitativă și cantitativă a materiei, pentru cercetarea cineticii chimice și biochimice, precum și a evoluției imunologice a unor sisteme antigen-anticorp. Sistemul conform invenției este alcătuit dintr-o sursă (1) laser pulsatoare, o prismă (2) optică cu patru laturi, pe fața mare a acesteia fiind depus un strat (3) de aur pur, de grosime micrometrică, peste care este depus un film (4) de analizat, și dintr-un sistem senzorial și de prelucrare a datelor, alcătuit, la rândul lui, dintr-un detector (7) de tip Diode-Array, dintr-un senzor (8) piezoelectric de vibrație, cu frecvența de rezonanță situată în domeniul MHz, din două amplificatoare (9 și 10) electronice, o unitate de calcul (11) și o imprimantă (12) electronică. În situația folosirii sistemului ca sistem de analiză clinică de tip imuno-sensorial, filmul (4) de analizat este o compoziție de tip gel, care include în structura sa anticorpii (5) care leagă antigenii (6) din mediul analizat, figura 1.
Rezumat

Invenția se referă la un dispozitiv fotoacustic portabil, pentru analize spectrofotoacustice calitative și cantitative in situ a unor substanțe lichide. Dispozitivul conform invenției este format dintr-un sistem de strângere de tip clește articulat, compus din două brațe (3 și 4) de desfacere, acționate manual, două bacuri (5 și 6) de strângere, un bolț (7) și un arc (8) de strângere. Într-unul dintre bacuri este montată o fibră optică (10) legată la o diodă (14) laser cu regim de lucru în impuls, iar pe celălalt bac este lipit nedemontabil un senzor (9) piezoelectric, realizat din folie de polivinilidin legat, prin doi conductori (11) electrici, la un amplificator (16) de diferență de fază de tip Lock-In, în care, pe lângă semnalul piezoelectric, intră și un semnal electric al unui trigger (15) optic cu fotocelulă, care sesizează pulsul diodei (14) laser, achiziția, prelucrarea și afișarea datelor fiind realizate cu ajutorul unui calculator (17) prevăzut cu un program de calcul specializat, figura 1.

Abstract

The invention relates to a portable photoacoustic device for in-situ qualitatively and quantitatively spectrophotoacoustically analyzing liquid substances. According to the invention, the device consists of a clamping system of the articulated pliers type consisting of two hand driven releasing arms (3 and 4), two wedge grips (5 and 6), a bolt (7) and a tightening spring (8), in one of the wedge grips there is mounted a fibre optic (10) connected to a laser diode (14) with pulse working duty, and on the other wedge grip there is non-removably adhered a piezoelectric sensor (9) made of a polyvinylidene foil connected, by two electrical conductors (11), to a lock-in type phase shifting difference, in which, besides the piezoelectric signal there also enter an electric signal of an optical trigger (15) with photocell which senses the pulse of the laser diode (14), the acquisition, processing and displaying of the data being achieved by means of a computer (17) provided with a specialized calculation program, figure 1.
Rezumat

Invenția se referă la un aparat de laborator pentru măsurarea grosimii biofilmelor și pentru determinarea compoziției chimice a acestora. Aparatul conform invenției este compus dintr-un laser (1) pulsator, o prismă (2) optică trapezoidală pe a cărei față mare se găsește un biofilm (3) supus cercetării, un detector (4) fotoelectric de tip diode Array, un senzor (5) piezoelectric și o unitate (6) electronică, figura 1.

Abstract

The invention relates to a laboratory apparatus for measuring the biofilms thickness and for determining the chemical composition thereof. According to the invention, the apparatus comprises a pulsing laser (1), a V-shaped optical prism (2) on whose large face there is a biofilm (3) to be studied, a photoelectric detector (4) of the diode Array type, a piezoelectric sensor (5) and an electronic unit (6), figure 1.
Rezumat

Invenția se referă la un aparat portabil cu ultrasunete, pentru determinarea vâscozității cinematice a lichidelor, precum și pentru determinarea comportării vâscoelastice a materialelor de vâscozitate ridicată. Aparatul conform invenției este constituit dintr-o structură modulară portabilă compusă dintr-o unitate (1) electronică și o sondă, iar sonda este alcătuită din două cristale (3 și 4) piezoelectrice din cuarț, două corpuri (5 și 6) de atenuare, un suport (7) care prezintă o fereastră inundată cu o materie (M) analizată, o tijă (8) pe care este trasat un reper (R) pentru marcarea adâncimii de scufundare, și un mâner (9) de prindere, figura 1.

Reometru electronic

Abstract

The invention relates to a portable ultrasound apparatus for determining the kinematic viscosity of liquids and for determining the viscoelastic behaviour of high viscosity materials. According to the invention, the apparatus consists of a portable modular structure comprising an electronic unit (1) and a probe, the probe consisting of two piezoelectric quartz crystals (3 and 4), two damping bodies (5 and 6), a support (7) presenting a window flooded with the material (M) to be analyzed, a rod (8) on which there is laid out a mark (R) for indicating the immersing depth and a gripping handle (9), figure 1.
Rezumat

Invenția se referă la o mașină și la un procedeu pentru fabricarea cepurilor cilindrice, folosite pentru corecția nodurilor negre, căzătoare, din cherestea. Masina conform invenției este formată dintr-o unitate de frezare, o unitate de debitare cu pânză de ferăstrău circular și o structură de ghidare, strângere și avans, unitatea de frezare fiind compusă dintr-un bătiu (2), un motor (3) electric de antrenare a unei freze (4) pentru lemn, un arbore (6) de antrenare, un cilindru (7) pneumatic pentru deplasarea unității de frezare înspre și din spre o tijă (9) cilindrică, lungă din lemn, realizată din creanga unui arbore din aceeași specie de lemn cu cherestea de corectat, unitatea de debitare având în compunere un motor (10) electric, un sistem (11 și 12) de avans o pânză (13) de ferăstrău, circular, structura de ghidare,strângere și avans având în compunere un braț (14) basculant fixat pe un lagăr (15) și deplasat cu o tijă (16) a unui piston plasat într-un cilindru (17) pneumatic,un clește format la randul lui din niște bacuri (18 și 19), fix și mobil, acționat de pistonul unui alt cilindru (20) pneumatic, un limitator (21) mecanic și un șurub (22) pentru reglarea poziției acestuia. Procedeul conform invenției cuprinde un ciclu de prelucrare automat, format din cinci faze succesive, care constau din: pornirea mașinii, strângerea tijeii (9) cilindrice, frezarea frontală a tijeii (9) cilindrice cu aiutorul frezei (4) care realizează și teșirea la 45° a muchiei cepului (1), deplasarea pneumatică a tijeii (9) cilindrice spre pânza (13) ferăstrăului circular, în vederea tăierii cepului (1) și avansul automat gravitațional al tijeii (9) cilindrice, în vederea efectuării unui nou ciclu de prelucrare, figura 1.

Fig. 1.
Abstract

The invention relates to a machine and process for manufacturing cylindrical tenons used for correcting black loose knots in the sawn timber. The claimed machine comprises a milling unit, a cutting unit having a circular saw blade and a structure for guiding, clamping and feeding, the milling unit comprising a frame (2), an electric motor (3) for driving a wood milling cutter (4), a driving shaft (6), a pneumatic cylinder (7) for moving the milling unit towards and from a long cylindrical wooden rod (9) made of a branch of a tree from the same species of wood with the sawn timber to be corrected, the cutting unit comprising an electric motor (10), a feeding system (11 and 12) and a circular saw blade (13), the structure for guiding, clamping and feeding comprising an arm (14) tiltingly fixed on a bearing (15) and moved with a rod (16) of a piston placed in a pneumatic cylinder (17), some tongs formed in their turn of some dies (18 and 19), namely a fixed one and a mobile one, actuated by the piston of another pneumatic cylinder (20), a mechanical stop (21) and a screw (22) for adjusting the position thereof. The claimed process consists of an automatic processing cycle formed of five successive steps which consists in starting the machine, clamping the cylindrical rod (9), face milling the cylindrical rod (9) by means of the milling cutter (4) which also carries out the chamfering of the edges of the tenon (1) at an angle of 45 DEG, moving pneumatically the cylindrical rod (9) towards the circular saw blade (13) in order to cut the tenon (1) and automatically-gravitationally feeding the cylindrical rod (9) in order to perform a new machining cycle, figure 1.
The invention relates to an ultrasound rheometer meant to in situ determine the values which characterize the elastic-viscous and the viscous-elastic states, respectively, of the liquid matter to be analyzed from the rheological point of view. According to the invention, the rheometer comprises a portable ultrasound electronic equipment comprising an electronic unit (2) and a hand probe comprising a piezoelectric quartz crystal (4) functioning alternatively as ultrasound emitter and receiver, a disc (5) made of ultrasound attenuation material, a polished stainless steel disc (6) for reflecting the ultrasound waves, two arms (7 and 8), a cylindrical metal rod (9) and a rubber-coated handle (10), figure 1.
Resumat

Invenția se referă la aparat portabil pentru determinarea in situ a tensiunii superioare a lichidelor prin metoda dinamică. Aparatul conform învenției este format dintr-un corp metalic cu dimensiuni relativ mici, care cuprinde două compartimente (1 și 11) în care se găsesc montate un magnet (2) continuu, o bobină (3) electrică, înfășurată pe un suport (4) cilindric nemetalic, un arc (5) metalic, două lentile (6 și 7) optice, plan convexe, o picătură (8) din lichidul analizat, un sensor (9) video, de tip CCD fix, și niște fire (10) electrice, precum și o unitate electronică de achiziție, prelucrare și afișare date, plasată într-un compartiment (11) paralelipipedic, figura 1.

Abstract

The invention relates to a portable apparatus for in situ determining the surface stress of liquids by the dynamic method. According to the invention, the apparatus comprises a relatively small metal body having two compartments (1 and 11) wherein there are mounted a continuous magnet (2), an electric coil (3) wound on a non-metal cylindrical support (4), a metal spring (5), two plano-convex optical lens (6 and 7), a drop (8) of the liquid to be analyzed, a fixed CCD-type video sensor (9) and some electric wires (10) and also an electronic acquisition, processing and data display unit, placed in a parallellepipiedal compartment (11), figure 1.
Rezumat

Invenția se referă la un procedeu și la un dispozitiv destinat determinării în condiții de laborator a tensiunii superficiale a unui lichid pe principiul dinamic. Procedeul conform învenției constă în înregistrarea câte unei imagini video a unei picături lichide pentru fiecare sinusoidă a oscilației mecanice aplicată acesteia, valoarea tensiunii superficiale fiind determinată din valoarea vitezii de creștere a ariei suprafeței picăturii în zona liniară a curbei care reflectă evoluția ariei suprafeței picăturii în timp, iar limita de liniaritate fiind sesizată automat, pe baza valorii zero a derivatei de gradul unu, a ariei suprafeței picăturii în funcție de timp. Dispozitivul conform învenției este montat pe o masă (9) de lucru a unui microscop optic metalografic, sau a unui stereomicroscop echipat cu sisteme de analiză optoelectrică a imaginii, și este format dintr-un corp (1) metalic, pe care este montată o membrană (2) elastică metalică, prinsă pe un tub (3) cilindric, nemetalic, pe care sunt înfășurate niște spire (4) ale unei bobine electrice, care se poate deplasa fără frecare în interstîîtul dintre un magnet (5) continuu și un miez (6) magnetic, realizat din oțel moale, în zona centrală a membranei (2) metalice fiind fixat nedemontabil un disc (7) subțire, realizat din oțel inoxidabil, în centrul căruia este plasată o picătură (8) din lichidul analizat, figura 1.
Abstract

The invention relates to a process and a device intended to determine the surface tension of a liquid under laboratory conditions, using the dynamic principle. According to the invention, the process consists in recording a video image of a liquid drop for each sine curve of the mechanical oscillation applied thereto, the surface tension value being determined from the value of the drop surface area increasing speed in the linear zone of the curve which reflects the evolution of the drop surface area in time, the limit of linearity being automatically detected based on the zero value of the first order derivative of the drop surface area, depending on the time. The device claimed by the invention is mounted on a working table (9) of a metallographic optical microscope or stereo microscope provided with optoelectric image analysis systems and comprises a metal body (1) on which there is mounted a resilient metal membrane (2) attached to a non-metal cylindrical tube (3) on which there are wound some turns (4) of an electric coil which can move frictionless within the gap between a continuous magnet (5) and a magnetic core (6) made of soft steel, in the central zone of the metal membrane (2) there being undetachably fixed a thin disc (7) made of stainless steel, in the centre of which a drop (8) of the liquid to be analyzed is placed, figure 1.

Fig. 1.
Rezumat

Invenția se referă la o metodă pentru determinarea concentrăției unei soluții lichide, binare, pe baza informațiilor rezultate la determinarea tensiunii superficiale pe cale dinamică a acesteia. Metoda conform invenției constă în aceea că valoarea tensiunii superficiale a unei picături lichide, provenite din soluția analizată, determinată prin procedeul dinamic ce cuprinde vibrarea picăturii în timpul măsurării ariei suprafeței la fiecare sinusoidă completă a vibrației, precum și determinarea tensiunii superficiale din viteza de creștere a ariei suprafeței picăturii, este extrapolată automat pe curba tensiune superficială - concentrație realizată pentru specia chimică analizată, în vederea obținerii unei bune reproducibilități a datelor, aria maximă a suprafeței libere a picăturii fiind determinată pentru zona limitei de liniaritate a curbei care descrie evoluția ariei suprafeței picăturii analizate în funcție de timp, iar limita de liniaritate fiind determinată tot automat, în punctul în care derivata de gradul unu a acestor valori are valoarea zero.

Abstract

The invention relates to a method for determining the concentration of a binary liquid solution, based on the information resulting from the dynamical determination of the surface tension thereof. According to the invention, the method consists in that the value of the surface tension of a liquid drop of the solution to be analyzed, determined by the dynamic process consisting in vibrating the drop while measuring the surface area at each complete sine curve of the vibration and in determining the surface tension from the value of the drop surface area increasing speed, is automatically extrapolated on the surface tension - concentration curve carried out for the chemical species to be analyzed, where, for good data reproducibility, the maximal area of the free surface of the drop is determined for the limit of linearity zone of the curve which describes the evolution of the drop surface area analyzed depending on the time, the limit of linearity being determined automatically, as well, in the point in which the first order derivative of said values is zero.
Rezumat

Invenția se referă la un produs alimentar sub formă de vafă, și la un procedeu pentru prepararea acestuia. Produsul conform învenției conține 28,26% fibre, din care 19% fibre solubile, 52,62% carbohidrați, 1,26% proteine, 0,96% substanțe minerale, 0,29% lipide, cu valoare energetică de 294,67 kcal/100 g sau 1232,58% kJ/100 g. Procedeul conform învenției constă din amestecarea prin malaxare a materiilor prime constând din făină de grâu, fibră de mazăre, inulină, făină din semințe de struguri, lapte praf degresat, ulei de floarea-soarelui, sare, bicarbonat de sodiu și apă, rezultând un aluat omogen care se coace în forme, la o temperatură de 145...150°C, timp de 2,5..3 min, rezultând un produs cu un conținut de umiditate de 1...2%, care se taie mecanic la forma și dimensiunea dorite.

Abstract

The invention relates to a food product as wafer and to a process for preparing the same. The claimed product comprises 28.26% fibres wherefrom 19% are soluble fibres, 52.62% carbohydrates, 1.26% proteins, 0.96% mineral substances, 0.29% lipids with an energetic value of 294.67 kcal/100 g or 1232.58% kJ/100 g. The claimed process consists in mixing the raw materials consisting of wheat meal, pea fibers, inulin, grape seed meal, defatted powder milk, sunflower oil, salt, sodium bicarbonate and water, to result a homogenous dough which is baked in forms at a temperature of 145...150 DEG C for 2.5..3 min, there resulting a product with a moisture content of 1...2% which is mechanically cut at desired shape and size.
Rezumat
Invenția se referă la un fotometru, destinat determinării automate a concentrației și a imaginii microscopice din volume mici de probă lichidă. Fotometrul conform invenției este constituit dintr-o structură optoelectronică, modulară, formată dintr-o sursă (1) de radiație cu leduri, un multiplexor (2) optoelectronic comandat, un clește fotometric având un braț (3) articulat mobil, în care se găsește montată o lentilă (8) colimatoare, conectată la o fibră (9) optică și un braț (4) articulat fix, în care se găsește o altă lentilă (10) colimatoare, prevăzută cu o cavitate cu raza de curbură egală cu valoarea razei de curbură a lentiei (8) colimatoare, conectată, la rândul ei, la o altă fibră (11) optică, cu scindare în două fibre (12 și 13) optice, tot în brațul (3) articulat mobil se mai găsește un motor (5) pas cu pas, un senzor (6) incremental de deplasare și un sistem (7) de deplasare de tip șurub-piuliță, în structura fotometrului automat mai intră o fotodiodă (14) cu sistem amplificator, o cameră (15) video cu detector CCD, un set (16) de obiective optice interschimbabile, un calculator (17) electronic, o imprimantă (18) electronică și un program (Pr) specific aplicației fotometric și microscopic, figura 1.
Resumat

Invenția se referă la un sistem spectromicroscopic, pentru probe cu volum redus, care permite efectuarea concomitentă și în același loc atât a analizei spectrometrice, cât și a studiului microscopic al unei probe lichide cu volumul de ordinul microlitrilor. Sistemul conform invenției este o structură optoelectronică modulară, compusă dintr-o sursă (1) de radiație, un braț (2) articulat mobil, un braț (3) fix, un arc (4) de strângere, un șurub (5) micrometric, o lentilă (6) colimatoare, conectată la o fibră optică (7), o altă lentilă (8) colimatoare, prevăzută cu o cavitate cu raza de curbură egală cu valoarea razei de curbură a primei lentile (6) colimatoare amintite, conectată, la rândul ei, la o altă fibră (9) optică, cu scindare în două fibre (10 și 11) optice, un spectrometru (12) miniatural cu rețea de difracție fixă și detector Diode Array, o cameră (13) video cu detector CCD și cu un set (14) de obiective optice interschimbabile, toate informațiile fiind gestionate de către un calculator (15) electronic și un program (Pr) specific aplicației, figura 1.

PATENT RO127683 / 2012
Spectromicroscopic system for reduced volume samples

Abstract

The invention relates to a spectro-microscopic system for reduced volume samples, which allows both the spectrometric analysis and the microscopic study of a liquid sample with a volume in the range of microliters to be performed simultaneously and in the same place. According to the invention, the system is a modular optoelectronic structure comprising a radiation source (1), a mobile articulated arm (2), a fixed arm (3), a clamping spring (4), a micrometric screw (5), a collimating lens (6) connected to an optical fibre (7), another collimating lens (8) provided with a cavity with a radius of curvature equal to the value of the curvature radius of the first above-mentioned collimating lens (6), connected in its turn to another optical fiber (9) slit into two optical fibers (10 and 11), a miniature spectrometer (12) equipped with fixed diffraction grating and Diode-Array detector, a video-camera (13) with CCD detector and a set of interchangeable optical lenses (14), all the information being managed by an electronic computer (15) and a software program (Pr) specific to the application, figure 1.
Photometric probe for nickel plating baths

The invention relates to a photometric opto-electronic probe meant for the in situ and in various location determination of nickel ion concentration in the nickel plating baths. According to the invention, the probe consists of a polymer material body (1), a LED-type emitting diode (2) tuned to the 656 mm wavelength, a receiving photodiode (3), a rod (4) graded in mm, a handle (5), a cable (6) for electrical connection, an electronic unit (7), a galvanic bath (8), a nickel plating electrolyte (9), a cathode (10), an anode (11) and a direct current source (12), figure 1.
Procedeu şi aparat pentru determinarea gradului de gelifiere

Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei
Clasificarea internaţională: G01N11/00; G01N33/02
Prioritate: RO2010001343 20101213

Rezumat

Invenţia se referă la un procedeu şi la un aparat electronic de laborator, destinat determinării gradului de gelifiere, cu aplicaţii în special la produsele alimentare. Procedeul conform invenţiei este bazat pe corelarea unghiului \(\delta \) de defazare ce apare între frecvenţa unei tensiuni electrice sinusoidale, aplicată unei bobine mobile a unui motor electrodinamic liniar, şi între frecvenţa unei tensiuni electrice produsă de o bobină fixă, în care oscilează un miez mobil, prelungit în partea superioară cu o tijă cuplată cu motorul electrodinamic liniar, prin intermediul unui cuplaj magnetoelastic şi prelungit, în partea inferioară, cu o altă tijă ce transmite mişcarea alternativă sinusoidală unui penetrator metallic sub formă de ac metalic lung şi uşor conic, cu gradul de gelifiere a materiei cercetate. Aparatul conform invenţiei este format dintr-un batiu (1) fix şi un corp (2) rabatabil cu 180\(^\circ\) în jurul unui bolt (3), prelucrarea şi afişarea datelor fiind asigurată prin intermediul unei unităţi (5) electronice, în corpul (2) rabatabil se găseşte un motor electrodinamic liniar, compus dintr-un magnet (6) continuu, un miez (7) magnetic fix, o bobină (8) a cărei mişcare de oscilaţie sinusoidală este transmisă unui penetrator (10) metallic sub formă de ac metalic lung, uşor conic, prin intermediul a doi magneti (11 şi 12) permanenţi, al unui arc (13) lamelar, al unor tije (14 şi 15) cilindrice şi al unui miez (16) magnetic ce se deplasează în interiorul unei bobine (17) electrice fixe, pe corpul (2) rabatabil se mai găseşte montat un senzor (18) de temperatură, iar prin locaşul cilindric al batiului (1) fix se găseşte un vas (19) din sticlă ce conţine un mediu (20) de lucru destinat gelifierii şi o cămaşă (21) de termostatere realizată cu elemente Peltier, figura 1.

PATENT RO127688 / 2012

Process and apparatus for determining the gelling degree

Abstract

The invention relates to a process and an electronic laboratory apparatus meant to determine the gelling degree, with applications particularly to food products. According to the invention, the process is based on correlating an angle of phase difference (\(\delta \)) occurring between the frequency of a sinusoidal electric voltage applied to a movable coil of a linear electrodynamic motor and the frequency of an electric voltage produced by a fixed coil, wherein a movable core oscillates, said core being extended to the upper side with a rod coupled to the linear electrodynamic motor by means of a magneto-elastic coupling and extended to the lower side with another rod which transmits the alternating sinusoidal motion to a metal penetrator in the shape of a long slightly taper metal needle, with the gelling degree of the material to be inspected. The apparatus claimed by the invention consists of a fixed frame (1) and a body (2) tiltable by 180\(^\circ\) about a bolt (3), the data processing and displaying being ensured by means of an electronic unit (5), in the tiltable body (2) there being a linear electrodynamic motor consisting of a continuous magnet (6), a fixed magnetic core (7), a coil (8) whose sinusoidal oscillation movement is transmitted to a metal penetrator (10) as a long slightly taper metal needle, by means of two permanent magnets (11 and 12), of a laminated spring (13), of some cylindrical rods (14 and 15) and of a magnetic core (16) moving inside a fixed electrical coil (17), on the tiltable body (2) there is also mounted a temperature sensor (18) and in the cylindrical seating of the fixed frame (1) there is a glass vessel (19) containing a working medium (20); meant to be gelified and a temperature controlled jacket (21) achieved with Peltier elements, figure 1.
Rezumat

Invenţia se referă la un durimetru electronic portabil, destinat determinării durităţii materialelor metalice şi a maselor plastice. Durimetrul conform învenţiei sale este un echipament portabil, compus din două sonde (S_1 şi S_2), una destinată determinării durităţii metaalelor, şi cea altă destinată determinării durităţii maselor plastice, un cablu (C) de conectare electrică şi o unitate (U) electronică, sondele (S_1 şi S_2) se compun, la rândul lor, fiecare, dintr-un corp (1) cilindric, prevăzut cu un manşon (2) de cauciuc, un penetrator (3) ce acţionează asupra unui material (4) încercat, un portpenetrator (5), o tijă (6) de încărcare, o talpă (7) de fixare, o bucă (8) de ghidare, un arc (9) de fixare, o bucă (10) de ghidare cu bile, un arc (11) de preîncărcare, o tijă (12) de contact, o piuliţă (13) de pretensiune, o celulă (14) dinamometrică ce are senzori rezistivi, un conector (22) electric, şi o unitate electronică (U), iar la lucrul în condiţii de laborator, echipamentul se completează cu o structură fixă, formată dintr-un batiu (24), o coloană (25) cilindrică, un corp (26) transversal, două piuliţe (27 şi 28) de strângere cu pârghie, o pârghie (29) de ridicare şi o masă (30) pentru proba încercată la duritate, figura 1.

Abstract

The invention relates to a portable electronic durometer meant to determine the hardness of metal materials and plastics. According to the invention, the durometer is a portable equipment comprising two probes (S_1 and S_2), one being destined to determine the hardness of metals and the other being destined to determine the hardness of plastics, an electric connection cable (C) and an electronic unit (U), the probes (S_1 and S_2), in their turn, each comprises a cylindrical body (1) provided with a rubber sleeve (2), a penetrator (3) acting upon a material (4) to be tested, a penetrator holder (5), a loading rod (6), a mounting sole (7), a guiding bushing (8), a retaining spring (9), a ball guiding bushing (10), a pre-loading spring (11), a contact rod (12), a pretensioning nut (13), a dynamometric cell (14) with resistive sensors, an electric contact plug (22), and an electronic unit (U) and, while operating in laboratory conditions, the equipment is completed with a fixed structure comprising a frame (24), a cylindrical column (25), a cross body (26), two clamping nuts (27 and 28) with lever, a beat-up lever (29), and a table (30) for the probe to be tested to hardness, figure 1.
Celulă fotometrică de curgere pentru băile galvanice de nichelare

Autori: Gutt Gheorghe; Gutt Sonia; Poroch – Serițan Maria
Clasificarea internațională: G01J1/10; G01N21/17
Prioritate: RO20100001340 20101213

Rezumat

Invenția se referă la o celulă fotometrică de curgere, destinată determinării continue in situ și automate a concentrației ionului de nickel din băile galvanice de nichelare. Celula de curgere, conform invenției, este compusă dintr-un corp (1), un canal (C) cilindric, o diodă (2) de tip LED, o fotodiodă (3) receptoare, o unitate (4) electronică, un electrolit (5) galvanic de nichelare fiind transportat din și înspre o baie (6) galvanică de nichelare, prin intermediul unei pompe (7) peristaltice, a două furtunuri (8 și 9) siliconice transparente, fixate, la rândul lor, etans pe corp (1), cu ajutorul a două piulițe (10 și 11), un catod (12) - piesa de nichelat, un anod (13) din nickel pur și dintr-o sursă (14) electrică de curent continuu, figura 1.

PATENT RO127681 / 2012
Flow photometric cell for nickel – coating baths

Abstract

The present invention relates to a flow photometric cell meant for continuously and automatically in situ determining the concentration of the nickel ion in the nickel-coating baths. According to the invention, the flow cell comprises a body (1), a cylindrical channel (C), a LED-type diode (2), a receiving photodiode (3), an electronic unit (4), a nickel-coating electrolyte (5) being conveyed from and to a nickel-coating bath (6) by means of a peristaltic pump (7), two transparent silicone hoses tightly fixed, in their turn, on the body (1) by means of two nuts (10 and 11), a cathode (12) - the piece to be nickel-coated, an anode (13) of pure nickel and a DC power supply (14), figure 1.
Monocromator cu fibră optică

Rezumat

Invenția se referă la un monocromator cu fibră optică, ce este destinat realizării alimentării cu radiație luminoasă, la lungimi de undă precise, a unei soluții multicomponent în vederea determinării rapide a concentrației fiecărui component. Monocromatorul conform invenției are o structură compactă, monobloc, ce asigură comutarea automată a aprinderii unor LED-uri (\(1_{1-n}\)) turnate circular într-o matrice (8) polimerică, prin intermediul unui multiplexor (3) electronic, radiația luminoasă fiind transmisă prin tot atâtea fibre (9\(_{1-n}\)) optice spre o fibră (10) optică colectoare, ce iradiază o cuvă (11) realizată din sticlă, care conține o soluție (S) de analizat, intensitatea radiației luminoase fiind transformată de către o fotodiodă (12) și un amplificator (13) electronic, într-o tensiune electrică proporțională, care este memorată, procesată și afișată într-o unitate (7) electronică, sub formă de valori de concentrație ale speciei chimice fotometrate în acel moment la lungimea de undă specifică acesteia, figura 1.

Abstract

The invention relates to a fiber-optic monochromator meant to carry out the supply of a multicomponent solution with a luminous radiation of precise wavelengths in order to rapidly determine the concentration of each component. According to the invention, the monochromator has a compact structure ensuring an automatic switching on of some LEDs (\(1_{1-n}\)), circularly cast into a polymer matrix (8), by an electronic multiplexer (3), the luminous radiation being transmitted through the same number of optical fibers (9\(_{1-n}\)) to a collecting optical fiber (10) which irradiates a vat (11) made of glass, containing the solution (S) to be analyzed, the intensity of the luminous radiation being converted into a proportional electric voltage by a photodiode (12) and an electronic amplifier (13), said voltage being stored, processed and displayed in an electronic unit (7); as concentration values of the chemical species which is photometered at that moment at the wavelength specific thereto, figure 1.
Aparat pentru încercarea și caracterizarea avansată a materialelor

Autori: Gutt Sonia; Gutt Gheorghe; Severin Traian Lucian; Gutt Andrei
Clasificarea internațională: G01N3/40
Prioritate: RO20100000873 20100921

Rezumat

Invenția se referă la un aparat de laborator destinat încercării și caracterizării complexe a materialelor metalice și nemetalice, prin intermediul unui penetrator dur de o anumită geometrie, folosind sarcini progresiv crescătoare și interpretând valorile obținute atât ale componente de deformare elastică, cât și a componente de deformare plastică, prin prisma durității (H), a modului de elasticitate (E), a lucrului mecanic de deformare elastică (W_el), a lucrului mecanic de deformare elastică (W_pl) și a lucrului mecanic total de deformare plastică (W_tot) precum și tendinței de fluaj (T_f) a materialului încercat. Aparatul conform învenției este construit dintr-un corp (1), un servomotor (2) electric cu reductor mecanic cuplat, printr-un arbore (3) la un arbore (4) excentric, care deplasează penetratorul (5), prin intermediul unui portpenetrator (6), al unui arc (7) de compresiune, al unei celule (8) dinamometriche, al unei tije (9) cilindrice, al unei biele (10) și al unui bolt (11), spre materialul (12) încercat, întregul echipament fiind fixat și rigidizat, prin intermediul unei piulițe (24), pe un corp (29) transversal care aparține unui stativ metallic rigid, compus dintr-un batiu (25) o roată (26) cu manivelă, un platan (27), o coloană (28) de susținere și o pârghie (30) de strângere, figura 1.

Apparatus for advanced characterization and testing of materials

Abstract

The invention relates to a laboratory apparatus meant for the testing and complex characterization of metal and non-metal materials by means of a hard penetrator of a certain geometry, by using progressively increasing loads and interpreting the obtained values for both elastic deformation component and the plastic deformation component from the point of view of hardness (H), of elastic modulus (E), of the mechanical work required for elastic deformation (W_el), of the mechanical work required for plastic deformation (W_pl), of the total mechanical work required for deformation (W_tot), and also the creep tendency (T_f) of the material to be tested. According to the invention, the apparatus comprises a body (1), an electric servomotor (2) with a mechanical reduction unit coupled by means of a shaft (3) to an eccentric shaft (4) which moves the penetrator (5) by means of a penetrator holder (6), a compression spring (7), a dynamometric cell (8), a cylindrical rod (9), a connecting rod (10) and a bolt (11) towards the material (12) to be tested, the entire equipment being fastened and stiffened by means of a nut (24) on a cross-body (29) belonging to a rigid metal rack consisting of a frame (25), a crank wheel (26), a cup (27), a supporting column (28), a locking clamp (30), figure 1.
Metodă și modul portabil pentru determinarea caracterului antioxidant al alimentelor

Autori: Gutt Sonia;
Clasificarea internațională: G01N27/26; G01N33/02
Prioritate: RO20100000906 20100927

Rezumat

Invenția se referă la o metodă și la un modul portabil pentru determinarea caracterului antioxidant al alimentelor care se găsesc în stare lichidă sau în stare de terci. Metoda conform invenției are la bază măsurători potențiometrice ale caracterului antioxidant-reducător al alimentului cercetat, folosind în acest scop: un anumit volum de aliment (a) cercetat la diverse temperaturi pozitive sau negative, la diverse timpuri și la diverse compoziții ale alimentului. Modulul conform invenției include un cip potențiometric miniatural, format dintr-un electroz (1) de lucru lamelar, din grafit pur, un contraelectrod (2) lamelar tot din grafit pur, un electroz (3) de referință lamelar, din Ag/AgCl, un suport (4) plan polimetric pentru electrozi (1, 2 și 3), un element (5) Peltier plan, alimentat de la o sursă (6) de curent continuu, prevăzut cu un senzor (7) de măsurare a temperaturii, un senzor (8) pentru reglarea temperaturii, un termosat (9) electronic, un potențiostat (10) electronic și un calculator (11) electronic, la măsurarea în domeniul temperaturilor pozitive peste cipul potențiometric fiind lipit un cadrul (12) paralelipipedic din polimetaacrilat de metil, cu înălțimea peretelui de 3 mm, ceea ce permite închiderea în cavitatea formată a unui volum de circa 2,5 cm³ de aliment (a) lichid cercetat, iar la studiul și cercetarea caracterului antioxidant al alimentelor la temperaturi negative, specifice condițiilor de refrigerare la partea superioară, peste suportul polimeric al cipului potențiometric fiind lipit un cadrul (13) paralelipipedic, din polimetaacrilat de metil, cu înălțimea de 20 mm, cadrul prevăzut cu un capac (14) din același material, fiind posibilă închiderea în cavitatea formată a unui volum de circa 20 cm³ de aliment (a) lichid cercetat, precum și izolarea acesteia împotriva atmosferei externe cavității, figura 1.

Abstract

The invention relates to a method and a portable module for determining the antioxidant character of liquid food or of food which is brought into a liquid or mashed state. According to the invention, the method is based on potentiometric measurements of the antioxidant-reducing character of the food to be tested, for this purpose there being used a certain amount of a food (a) to be tested at various positive or negative temperatures, at various time intervals and various food compositions. The module claimed by the invention includes a miniaturized potentiometric chip consisting of a platelike working electrode (1) of pure graphite, a platelike counter-electrode (2) of pure graphite, a reference platelike electrode (3) of Ag/AgCl, a plane polymeric support (4) for the electrodes (1, 2 and 3), a plane Peltier element (5) power-supplied from a D.C. source (6), provided with a temperature measuring sensor (7), a temperature control sensor (8), an electronic thermostat (9), an electronic potentiostat (10) and an electronic computer (11), where, upon measuring in the range of positive temperatures, over the potentiometric chip there is attached a parallelepipedal framework (12) of methyl polymethacrylate having the wall height of 3 mm, allowing the so formed cavity to accommodate a volume of about 2.5 cm³ of liquid food (a) to be tested while, upon studying and testing the antioxidant character of food at negative temperatures, specific to freezing conditions, at the top part, over the polymeric support of the potentiometric chip, there is attached a parallelepipedal framework (13) of methyl polymethacrylate having the height of 20 mm, provided with a cover (14) made of the same material, allowing the so formed cavity to accommodate a volume of about 20 cm³ of liquid food (a) to be tested as well as to insulate the same against the external atmosphere, figure 1.
Rezumat

Invenția se referă la o metodă și la un echipament pentru determinarea prospețimii uleiului alimentar. Metoda conform invenției este bazată pe măsurarea optoelectronică a ariei suprafeței unei picături \(p \) de ulei, ce se găsește pe o baie \(b \) de apă termostatată, urmată de convertirea automată a acestei suprafețe în grade de oxidare pe o scară de la 1 la 100, cu ajutorul unor curbe de calibrare memorate electronic. Echipamentul conform invenției este format dintr-un element \(1 \) Peltier, alimentat în curent continuu de la o sursă \(2 \) electrică de 12 V, o sticlă \(3 \) cavă de laborator, fixată cu un adeziv \(4 \) termoconductor de elementul \(1 \) Peltier, un senzor \(5 \) de temperatură, un termostat \(6 \) electronic, un stereomicroscop \(7 \) echipat cu un sistem \(8 \) de iluminare și o cameră \(9 \) video, un calculator \(10 \) electronic și un program \(11 \) specializat, figura 1.

Abstract

The invention relates to a method and an equipment for determining the freshness of edible oil. According to the invention, the method is based on the optoelectronic measurement of the surface area of an oil drop \(p \) located on a thermostated water bath \(b \), followed by the automatic conversion of said surface into oxidation degrees measured on a scale from 1 to 100 by means of some electronically memorized calibration curves. The equipment, as claimed by the invention, comprises a Peltier element \(1 \) which is D.C. supplied from a 12 V electric power source \(2 \), a hollow laboratory glass \(3 \) fixed with a thermally conductive adhesive \(4 \) to the Peltier element \(1 \), a temperature sensor \(5 \), an electronic thermostat \(6 \), a stereo microscope \(7 \) provided with a lighting system \(8 \) and a video camera \(9 \), an electronic computer \(10 \) and a specialized program \(11 \), figure 1.
41. BREVET RO127337 / 2012
Spectrometru de emisie portabil

Autori: Gutt Gheorghe; Gutt Sonia; Todirică Florin Sorin
Clasificarea internaţională: G01J3/443; G01N21/71
Prioritate: RO20100000874 20100921

PATENT RO127337 / 2012
Portable emission spectrometer

Abstract

The invention relates to a portable laser spectrometer destined to the emission spectral analysis with application in the elemental qualitative and quantitative analysis of metals and metal alloys and also in the analysis of ores, ceramics, glass and the like. According to the invention, the spectrometer comprises a probe (1), a miniature spectrometer (2) provided with a fixed diffraction grating and a Diode-Array detector, a fiber optic packet containing a central optical fibre (3) and several optical fibres (4) radially symmetrically arranged around the central optical fibre (3) inside a protection polymeric material (5), a medium power laser unit (6) for locally fusing the surface of a material (7) to be analyzed, a focusing lens (8), a laser telemeter (9) for maintaining constant the distance and for targeting the examined area, a button (11); for controlling the laser excitation and a portable computer (12) for data processing, figure 2.
Rezumat

Invenția se referă la un echipament optoelectronic portabil și compact, destinat determinării *in situ* a compoziției chimice elementale a unui cordon de sudură sau a pereților metalici ai unui rost de tăiere termică, în timpul procesului de sudare sau de tăiere cu arc electric, cu gaze sau cu laser, precum și a altor proceze de înaltă energie însoțite de emisii de radiație electromagnetică utilizând pentru analiza spectrometrică tocmai radiația de înaltă energie a acestor surse termice. Echipamentul optoelectronic, conform invenției este alcătuit dintr-un corp (1) în care este poziționat un spectrometru miniatural, format, la rândul lui, dintr-o lentilă (2) colectoare, o oglindă (3) optică colimatoare, o rețea de difracție (4), o oglindă (5) optică cu reflexie totală, un detector (6) Diode-Array, o interfață (7) de tip USB, un telemetru (9) cu laser, un canal optic realizat cu o cameră (16) video, compoziția chimică elementală a unui cordon (10) de sudură, realizat cu un arc electric (11) între electrod (12) de sudură și material (13 și 14), fiind determinată automat, cu ajutorul unui calculator portabil care asigură, împreună cu un program specializat, achiziția, prelucrarea și afișarea datelor spectrale, de compoziție, a imaginii video a zonei urmărite, precum și afișarea datelor telemetrice și de centrare optică a spectrometrului față de sursa de radiație, figura 1.
Rezumat

Invenția se referă la un dispozitiv optic, destinat adaptării unui sistem de analiză spectrometrică pe un microscop optic, astfel încât să fie posibilă, concomitent, atât examinarea microscopică, cât și analiza spectrometrică a materiei cercetate. Dispozitivul spectrometric, conform invenției, poate fi montat pe un tub (2) optic al unui microscop sau stereomicroscop binocular sau trinocular, prin înlocuirea unui ocular, și este alcătuit dintr-un corp (1) în care este înfiletat un alt corp (3), iar în acesta din urmă este înfiletată o tijă (4) în centrul căreia se găsește o fibră optică (5) protejată de un înveliș (6) polimeric, dintr-o lentilă (7) optică și dintr-o piuliță (8) de blocare, precum și dintr-un sistem spectrometric de tip miniatural, compact, ce este format din următoarele componente: lentilă (9) optică condensatoare, o rețea (10) de difrație fixă, o oglindă (10), o oglindă (11) optică plană, de reflexie, un detector (12) de tip Diode Array și o interfață (13) de tip USB, conectată printr-un cablu (14) electric, la un calculator (15) electronic, figura 1.

Abstract

The invention relates to an optical device meant for adapting a spectrometric analysis system to an optical microscope to make possible the microscopic examination concomitantly with the spectrometric analysis of the matter which is the subject of research. According to the invention, the spectrometric device may be mounted on an optical tube (2) of a microscope or binocular or trinocular stereo microscope by replacing an eye piece, and comprises a body (1) wherein another body (3) is screwed, in the said body (3) there being screwed a rod (4) in the centre of which there is an optical fibre (5) protected by a polymeric envelope (6), an optical lens (7) and a locking nut (8), as well as a miniaturized compact spectrometric system comprising the following components: an optical condensing lens (9), a fixed diffraction grating (10), a mirror (10), a plane reflecting mirror (11), a Diode-Array type detector (12) and an USB interface (13) connected by an electric cable (14) to an electronic computer (15), figure 1.
Sonda fluorimetrică

Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei
Clasificarea internaţională: G01N21/64
Prioritate: RO20080000291 20080417

Rezumat

Sonda fluorimetrică, caracterizată prin aceea că, în vederea măsurării valorii fluorescenței, ca o măsură a concentrației unei specii fluorescente (1) din substanțe solide, pulverulente sau din lichide îmbibate în materiale poroase sau pulberi, este constituită dintr-un lanț de măsurare compus dintr-un corp (2) în care se găsește un canal de excitare format dintr-un LED (3) cu emisie în albastru și un canal de măsurare a fluorescenței, așezat la un unghii de 90° față de canalul de excitare și format la rândul lui dintr-o lentilă optică colectoare (4), un filtru de interferență (5), un senzor CCD (6) de mare sensibilitate și o unitate de interfațare (7) de tip USB, figura 1.

Abstract

Fluorimetric probe is a measuring chain including a body (2) inside which there is an excitation channel consisting of a blue emission LED (3) and a fluorescence, measurement channel, placed at an angle of 90° against the excitation channel and being in its turn composed of optical collection lens (4), an interference filter (5), a high sensitivity CCD sensor (6) and an interface unit (7) of USB type, figure 1, used to measure the fluorescence value as a measure of the concentration of fluorescent species (1) in solid, powders or liquids soaked in porous materials and powders, figure 1.
Abstract

The invention relates to a portable fluorophotometer meant for the *in-situ* determination of a certain fluorescent chemical species of a solution (S) which is located in or flows through a cylindrical tube (1) of quartz glass or optical glass. According to the invention, the fluorophotometer consists of a mobile resilient clamp (C) containing a light-emitting diode (11) which emits monochromatic radiation on a wavelength specific to the maximal value of the fluorescence radiation of a chemical species to be detected and a receiving photo-diode (12) located under an angle of 90° as against the direction of the excitation radiation, and a central electronic unit (2) for data acquisition, processing and control, linked to the mobile resilient clamp (C) by a mobile connector (3) and an electric cable (4), figure 1.
Rezumat

Invenția se referă la un sistem turbidimetric portabil, destinat determinării in situ a concentrației suspensiilor din soluții, printr-o metodă care se determină a fi optimă și care poate fi o metodă turbidimetrică sau nefelometrică. Sistemul conform invenției este alcătuit dintr-o primă fotobarieră destinată determinării turbidității prin măsurarea unei radiății difuzate de o probă, și este formată dintr-un led (L₁) care emite o radiație monocromatică, având lungimea de undă de 860 nm, și dintr-o diodă (D₁) receptoare, așezată la un unghie de 90° față de direcția de radiație, dintr-o a doua fotobarieră, destinată determinării turbidității prin măsurarea unei radiații care străbate proba, și este formată dintr-un led (L₂) care emite o radiație monocromatică, având lungimea de undă de 860 nm, și dintr-o diodă (D₂) receptoare, așezată la un unghie de 180° față de direcția de radiație, și dintr-o a treia fotobarieră, destinată determinării turbidității pe cale nefelometrică, prin măsurarea unei radiații care străbate proba, și este formată dintr-un led (L₃) care emite o radiație monocromatică, având lungimea de undă de 860 nm, și dintr-o diodă (D₃) receptoare, așezată la un unghie de 120° față de direcția de radiație, elementele optice ale fotobarierelor fiind montate în niște orificii cilindrice, realizate în două bacuri (2 și 3) ale unui eșel pe strângere elastică, în alcătuirea căruia mai intră două brațe (4 și 5), două canale (C₁ și C₂) pentru conexiuni electrice, două capace (6 și 7) din tablă de oțel, un bolt (9), un arc (10) și un cablu electric (11) ce face legătura cu o unitate (12) electronică, figura 1.

Abstract

The invention relates to a portable turbidimetric system meant to in-situ determining the concentration of solution suspensions by a method established to be optimal, such as a turbidimetric or a nephelometric method. According to the invention, the system consists of a first photo-barrier for determining turbidity by measuring the radiation emitted by a sample, which consists of a LED (L₁) emitting a monochromatic radiation having a wavelength of 860 nm and a receiving diode (D₁) arranged under an angle of 90° in respect of the radiation direction, a second photo-barrier for determining turbidity by measuring the radiation passing through the sample, which consists of a LED (L₂) emitting a monochromatic radiation having a wavelength of 860 nm and a receiving diode (D₂) arranged under an angle of 180° in respect of the radiation direction, and a third photo-barrier meant to determine turbidity by nephelometry, by measuring the radiation passing through the sample, which consists of a LED (L₃) emitting a monochromatic radiation having a wavelength of 860 nm and a receiving diode (D₃) arranged under an angle of 120° in respect of the radiation direction, the optical elements of the photo-barriers being mounted within some cylindrical orifices cut into two dies (2 and 3) of resiliently clamping jaws which also comprise two arms (4 and 5), two channels (C₁ and C₂) for electrical connections, two steel sheet covers (6 and 7), a bolt (9), a spring (10) and an electric cable (11) making the connection with an electronic unit (12), figure 1.
Autori: Gutt Gheorghe; Gutt Sonia
Clasificarea internațională: G01N21/64
Prioritate: RO20100000738 20100816
Rezumat
Invenția se referă la un fluorometru optoelectronic portabil. Fluorometrul conform invenției este constituit din următoarele componente: o sursă (1) de radiație policromatică, prevăzută cu un filtru (2) spectral rotativ, un spectrometru miniatural, echipat cu o rețea de difracție fixă, un detector Diode-Array și o interfață de calculator, o fibră (4) optică multiplă, compusă, la rândul ei, din mai multe fibre (5) optice de iradiere, dispuse radial, în jurul unei fibre (6) optice centrale, pentru transmitia radiației de fluorescență, o fibră (7) optică pentru transmiterea spectrului de referință al sursei (1) de radiație, o tijă (8) din oțel inoxidabil, prevăzută cu un umăr (9) de sprijin care prezintă o degajare (D) pentru eliminarea soluției în exces, o cuvă (10) singulară, care conține o soluție (S) de analizat, sau o cuvă (11) multiplă, care conține mai multe soluții diferite, și un calculator (12) portabil, pentru achiziția, prelucrarea și afișarea datelor, figura 1.

PATENT RO127233 / 2012
Portable optoelectronic fluorophotometer

Abstract
The invention relates to a portable optoelectronic fluorophotometer. According to the invention, the fluorophotometer comprises the following components: a polychromatic radiation source (1) provided with a rotary spectral filter (2), a miniature spectrometer (3) provided with a fixed diffraction grating, a Diode-Array detector and a computer interface, a multiple optical fibre (4) consisting, in its turn, of a plurality of irradiation optical fibres (5) radially arranged around a central optical fibre (6) for the transmission of the fluorescence radiation, an optical fibre (7) for the transmission of the reference spectrum of the radiation source (1), a stainless steel rod (8) provided with an abutment collar (9) exhibiting a recess (D) for eliminating the excess solution, a single tank (10) containing a solution (S) to be analyzed or a multiple tank (11) containing various different solutions, and a portable computer (12) for data acquisition, processing and display, figure 1.
Autors: Gutt Gheorghe; Gutt Sonia
Clasificarea internaţională: G01J1/02; G01N21/17
Prioritate: RO20100000663 20100728

Rezumat
Invenţia se referă la un fotometru portabil, destinat determinării în situ a concentraţiei unei anumite specii chimice, dintr-o soluţie lichidă. Fotometrul conform invenţiei este format dintr-o clemă (C) cu strângere elastică, ce este compusă din două bacuri (2 și 3), două braţe de apăsare, un led (5) care emite radiaţie monocromatică pe lungimea de undă specifică absorbantiei optice maxime a unei specii chimice urmărite, o fotodiodă (6) receptoare, un arc (7) pentru strângere elastică, un bolt (8) pentru articulaţie, precum și un cablu (9) de legătură și un conector (10) electric, pentru conectarea cu o unitate (11) electronică ce conține, la rândul ei, o sursă de alimentare cu curent electric, un amplificator electronic al curentului fotodiodei (6) receptoare, și un sistem de achiziție, prelucrare și afișare date, figura 1.

PATENT RO127131 / 2012
Portable photometer

Abstract
The invention relates to a portable photometer meant for in-situ determination of the concentration of a certain chemical species in a liquid solution. According to the invention, the photometer consists of a resiliently clamping clip (C) consisting of two cans (2 and 3), two pressing arms, a LED (5) emitting monochromatic radiation on the wavelength corresponding to the maximal optical absorbance of a chemical species to be analyzed, a receiving photodiode (6), a resiliently clamping spring (7), a bolt (8) for the articulation, as well as a connecting cable (9) and an electrical connector (10) making the connection with an electronic unit (11) comprising, in its turn, a current supply source, an electronic amplifier for the current of the receiving photodiode (6) and a data acquisition, processing and displaying system, figure 1.
Autori: Gutt Sonia; Gutt Gheorghe;
Clasificarea internaţională: G01J1/02; G01N21/17
Prioritate: RO20100000662 20100728

Rezumat

Invenţia se referă la un detector fotometric, destinat determinării concentraţiei mai multor specii chimice dintr-o soluţie. Detectorul conform invenţiei este format dintr-un corp (1) din material plastic, prevăzut cu nişte orificii cilindrice, în care sunt montate nişte leduri (L₁...L₆) emiţătoare şi nişte fotodiode (F₁...F₆) receptoare, distribuite radial, sub forma unor fotobariere, în jurul unui tub (2) din sticlă, în care se găseşte sau prin care curge o soluţie (S) de analizat, un canal (C) pentru firele de conexiune electrică, precum şi un element (5) de conectare electrică şi un cablu (6) electric de legătură, pentru conectarea cu o unitate (7) electronică, pentru multiplexare, achiziţie, prelucrare şi afişare date, figura 1.

PATENT RO127130 / 2012
Multiple photometric detector

Abstract

The invention relates to a photometric detector meant to determine the concentration of various chemical species in a solution. According to the invention, the detector consists of a plastic body (1) provided with some cylindrical orifices wherein there are mounted some emitting LEDs (L₁...L₆) and some receiving photodiodes (F₁...F₆) which are radially distributed, as light barriers, around a glass tube (2) wherein there is or there flows a solution (S) to be analyzed, a channel (C) for the electrical connection wires, as well as an electrical connection element (5) and an electrical connecting cable (6) making the connection with a data multiplexing, acquisition, processing and display electronic unit (7), figure 1.
Rezumat

Invenția se referă la un sistem fotometric pentru determinarea în situ și concomitentă a concentrației mai multor specii chimice dintr-o soluție. Sistemul fotometric, conform învenției, este alcătuit dintr-un clește cu strângere elastică, format din două bacuri (1 și 2) din material plastic, prevăzute cu niște orificii cilindrice, în care, pe unul dintre bacuri, sunt montate, cinci leduri (L₁...L₅) care emit radiație monocromatică, fiecare pe altă lungime de undă, iar pe celălalt bac sunt montate cinci fotodiode (D₁...D₅) receptoare, distribuite radial în jurul unui tub (3) din sticlă, în care se găsește static, sau prin care curge o soluție (s) de analizat, două canale (C₁ și C₂) destinate fișelor de conexiune pentru leduri, respectiv, pentru fotodiode, un bolț (6), un arc (8) de compresie, două brațe (9 și 10) de apăsare și o unitate (12) electronică, pentru multiplexare, achiziție, prelucrare și afișare date, figura 1.

Abstract

The invention relates to a photometric system for the concomitant in-situ determination of the concentration of various chemical species in a solution. According to the invention, the photometric system consists of a resiliently clamping clip consisting of two plastic cans (1 and 2) provided with some cylindrical orifices, where, on one of said cans there are mounted five LEDs (L₁...L₅) emitting monochromatic radiation, each one on a different wavelength, while, on the other can there are mounted five receiving photodiodes (D₁...D₅) which are radially distributed around a glass tube (3) wherein there is or there flows a solution (s) to be analyzed, two channels (C₁ and C₂) for the LEDs connection cables and photodiodes connection cables, respectively, a bolt (6), a compression spring (8), two pressing arms (9 and 10) and a data multiplexing, acquisition, processing and display electronic unit (12), figure 1.
Invenția se referă la un conductometru electronic portabil, destinat determinării conductivității electrolitice a soluțiilor apoase din tuburi de sticlă. Conductometrul conform invenției este format dintr-o clemă cu strângere elastică, compusă din două băcuri (1 și 2), doi electrozi (3 și 4) din oțel inoxidabil, muiați pe un tub (5) din sticlă în care se găsește o soluție (S) de analizat, un arc (6), pentru strângere elastică, un bolț (7), un cablu (8) de legătură electric, un conector (9) electric și o parte (E) electronică, formată, la rândul ei, dintr-o unitate (10) compactă, ce cuprinde un generator de înaltă frecvență, pentru alimentarea electrozilor (3 și 4), și un sistem de achiziție, prelucrare și afișare a datelor, figura 1.
52. PATENT RO127132 / 2012
Portable combined photometer

Abstract

The invention relates to a portable photometer meant for in-situ determination of the concentration of a chemical species, concomitantly with the determination of the electrolytic conductivity of the solution containing the chemical species. According to the invention, the portable photometer consists of a clip fixing it on a tube (1) with a solution to be analyzed, the clip consisting of two cans (2 and 3), two stainless steel electrodes (4 and 5) forming the coatings of a capacitor and tightly enveloping the tube (1), where each electrode has an orifice where through there passes the radiation of a LED (6) mounted on one of the cans of the clip, towards a receiving photodiode (7) placed on the other can of the clip, the monochromatic radiation emitted by the LED (6) having a wavelength corresponding to the maximal optical absorbance of a chemical species to be analyzed, the so formed assembly being connected, by means of a connecting cable (10) and an electrical connector (11), to an electronic unit (12), figure 1.

Fig. 1.
Rezumat

Invenția se referă la un sistem fotometric destinat determinării concentrației mai multor specii chimice dintr-o soluție, precum și determinării concomitente a conductivității electrolitice a soluției. Sistemul fotometric, conform invenției, este alcătuit dintr-o structură optoelectronică ce are, ca element principal, un clește cu strângere elastică, format din două brațe (1 și 2) de apăsare, două bacuri (3 și 4) din material plastic, prevăzute cu niște orificii cilindrice, în care pe unul dintre bacuri sunt montate cinci leduri (L1...L5) care emit radiație monocromatică, fiecare pe altă lungime de undă, iar pe celălalt bac sunt montate cinci fotodiode (F1...F5) receptoare, distribuite radial, în jurul unui tub (5) din sticlă, în care se găsește în mod static sau prin care curge o soluție (s) de analizat, în scopul măsurării conductivității soluției (s), pe fiecare bac (3 și 4) mai este montat câte un electroz (6 și 7) curbat, realizat din tablă de oțel inoxidabil, fiecare dintre cei doi electrozi (6 și 7) prezintând niște orificii circulare în dreptul ledurilor (L1...L3), respectiv al fotodiodelor (F1...F3), structura astfel formată se conectează la o unitate electronică (13), ce, la rândul ei, cuprinde un circuit oscilant de înaltă frecvență, un sistem de citire multiplexată a valorilor fotometrice, și un sistem de achiziție, prelucrare și afișare date, figura 1.

Abstract

The invention relates to a photometric system meant to determine the concentration of several chemical species in a solution and also to concomitantly determine the electrical conductivity of the solution. According to the invention, the photometric system comprises an optoelectronic structure having as a main element some tongs with resilient clamping consisting of two pressing arms (1 and 2), two dies (3 and 4) of plastic material provided with some cylindrical holes, wherein on one of the dies, there are mounted five light-emitting diodes (L1...L3) emitting a monochromatic radiation, each on different wavelength, and, on the other die, there are mounted five receiving photodiodes (F1...F3) radially distributed around a glass tube (5) wherein there is in stationary condition or through which there flows a solution (s) to be analyzed; in order to measure the conductivity of the solution (s), on each die (3 and 4) there is mounted a curved electrode (6 and 7) made of stainless steel sheet, each of the two electrodes (6 and 7) exhibiting some circular orifices in front of the light-emitting diodes (L1...L3) and photodiodes (F1...F3), respectively, an electronic unit (13) being connected to thus formed structure, said electronic unit comprising, in its turn, a high frequency oscillating circuit, a system of multiplexed reading the photometric values and a data acquisition, processing and display system, figure 1.
Rezumat

Invenția se referă la un sistem spectrometric de analiză portabil, destinat efectuării rapide, in situ, a concentrațiilor soluțiilor prelevate, precum și determinării concentrațiilor specifice analizei injecției în flux. Sistemul conform invenției constă dintr-o structură spectrometrică portabilă, formată dintr-un clește de măsurare, ce este compus din două bacuri (1 și 2), de strângere și două brațe (3 și 4), de apăsare, un arc (5) de apăsare, un știft (6), o fibră (9) optică de iradiere, o oglindă (10) miniaturală cu reflexie totală, o lentilă (11) colimatoare și o lentilă (12) de focalizare, o fibră (13) optică receptoare, un spectrometru (14) miniatural cu rețea de difrație fixă și detector Diode Array, o sursă (15) de radiație UV-VIS-NIR, prevăzută cu un tambur (16) cu filtre pentru analiza chimică cantitativă, și o unitate (17) portabilă de calcul, care asigură atât achiziția, prelucrarea și afișarea datelor, cât și alimentarea electrică a spectrometrului (14), miniaturat, precum și a sursei (15) de radiație, prin intermediul tensiunii interfeței USB, figura 1.

Abstract

The invention relates to a portable spectrometric analysis system meant to quickly perform an in situ analysis of the concentration of sampled solutions and also to determine the concentrations specific to the flow injection analysis. According to the invention, the system consists of a portable spectrometric structure comprising some measuring tongs which have two clamping dies (1 and 2) and two pressing arms (3 and 4), a pressing spring (5), a pin (6), a radiation optical fiber (9), a total-reflection miniature mirror (10), a collimating lens (11) and a focusing lens (12), a receiving optical fiber (13), a miniature spectrometer (14) with fixed diffraction grating and diode array detector, an UV-VIS-NIR radiation source (15) provided with a drum (16) with filters for the quantitative chemical analysis and a portable computer unit (17) ensuring both the acquisition, processing and display of data and the electrical supply of the miniature spectrometer (14) and also of the radiation source (15) through the voltage of USB interface, figure 1.
Tablou pentru ecranarea electrică a încăperilor

Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei
Clasificarea internațională: E04B1/92
Prioritate: RO20100000553 20100624

Rezumat

Invenția se referă la un tablou pentru ecranarea electromagnetică a încăperilor. Tabloul conform invenției reprezintă un mijloc pentru protejarea încăperilor de locuit, a spațiilor de lucru sau a spațiilor publice de efectul nociv al radiațiilor electromagneticice de înaltă și joasă frecvență, și este realizat dintr-o rama (1) din lemn, prevăzută cu o placă (2) suport din lemn, pe care sunt lipite niște discuri (3) și niște segmente (4) de umplere, tăiate din crengi uscate de lemn de esențe lemoase diferite, în spatele fiecărui disc din lemn fiind lipit invizibil fie un circuit (6) oscilant plan de tip LC, acordat pe diferite frevențe de rezonanță, specifice radiațiilor electromagneticice de înaltă frecvență din etar, fie o spiră (7) plană din cupru, legată în scurtcircuit, destinată consumului curentilor de joasă frecvență, specifici rețelelor de alimentare, în spațiile goale dintre discuri și segmentele de disc găsindu-se turnată o rășină (5) sintetică transparentă, planizată și sticloasă, figura 1.
Unitate portabilă pentru analiza și monitorizarea calității apei

 Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei
 Clasificarea internațională: G01J1/04; G01N21/17; G01N27/06; G01N33/18
 Prioritate: RO2010000055 20100624

Rezumat

Invenția se referă la o unitate portabilă, pentru analiza și monitorizarea calității apei, în vederea determinării concentrațiilor diferitelor specii chimice în apă, a turbidității și a conductivității electrolitice a apei. Unitatea conform învenției o constituie un echipament optoelectronic portabil, format dintr-o placă (1) de bază, pe care se găsesc fixate două axe (2 și 3) de rotație, pe care se găsesc montate două roți (4 și 5) dințate identice, în angrenare reciprocă, fiecare roată continuându-se cu câte o coroană (6 și 7); prima coroană (6) dispune de un anumit număr de locașuri cilindrice, de exemplu, șase, în care sunt poziționate verticale niște tuburi (81-6) din sticlă, în care se găsesc niște probe de apă de analizat, iar a doua coroană (7) dispune de cinci dozatoare (D1-5) speciale, ce conțin, fiecare, câte un reactiv de culoare, specific unei anumite specii chimice poluante, din probele de apă de analizat, determinarea concentrațiilor speciilor chimice din probele de apă se realizează cu o primă fotobarieră, (f1), după ce, în prealabil, în probele de apă au fost produse reacții de culoare, prin dozarea unor reactanți speciși, folosind, în acest scop, unul dintre dozatoare (D1-5); determinarea turbidității din probele de apă este realizată cu o a doua fotobarieră (f2) în combinație cu prima fotobarieră (f1), iar măsurarea conductivității electrolitice a apei este realizată prin intermediul abaterii frecvenței de oscilație a unui oscilator de tip LC de la frecvența de rezonanță, la care condensatorul oscillatorului de tip LC este format din doi electrozi (27 și 28) externi ai tuburilor (81-6) de sticlă, dielectricul condensatorului fiind coloana de apă cuprinsă între cei doi electrozi (27 și 28), figura 1.

PATENT RO127050 / 2012

Portable unit for analyzing and monitoring water quality

Abstract

The invention relates to a portable unit for analyzing and monitoring water quality, in order to determine the concentration of various chemical species in water, the turbidity and electrolytic conductivity of water. According to the invention, the unit is a portable optoelectronic equipment comprising a base plate (1) whereon there are fastened two axles (2 and 3) of rotation whereon there are mounted two identical toothed wheels (4 and 5) which reciprocally engage one another, each wheel continuing with a crown (6 and 7), the first crown (6) having a certain number of cylindrical seats, six for example, wherein there are vertically located some glass tubes (81-6) containing some water samples to be analyzed, and the second crown (7) has five special dispensers (D1-5) each containing a colour reagent specific to a certain polluting chemical species in the water samples to be analyzed, the determination of the concentrations of chemical species in the water samples is carried out by means of first photobarrier (f1), after there were previously produced colouring reactions by dispensing some specific reagents, into the water samples, using for this purpose one of the dispensers (D1-5); the determination of the turbidity in the water samples is carried out with a second photobarrier (f2) in combination with the first photobarrier (f1), while the measurement of the electrolytic conductivity of the water is carried out by means of the deviation of the oscillation frequency of an LC-type oscillator from the resonance frequency, whereeto the capacitor of the LC-type oscillator comprises two external electrodes (27 and 28) of the glass tubes (81-6), the dielectric of the capacitor being the water column between the two electrodes (27 and 28), figure 1.
Invenția se referă la un aerometru electronic, destinat determinării, concomitente și cu precizie ridicată a densității, váscozității dinamice și váscozității cinematice a lichidelor. Aerometrul conform invenției este alcătuit dintr-un plutitor (1) gol și etanș, care este continuat cu un tub (2) prelungitor închis la partea superioară cu un capac (3) metalic lustruit care are rol de oglindă reflectorizantă, pentru un senzor (4) interferometric cu laser, plutitorul (1) fiind introdus într-un cilindru (5) metallic ce conține un lichid (l) de cercetat, cilindru (5), care este prevăzut, la partea inferioară, cu o piuliță (6) care prezintă un orificiu (o) calibrat de scurgere, destinat unui anumit domeniu de váscozitate, váscozitatea dinamică determinându-se prin măsurarea timpului de scurgere a unui volum precis de lichid, măsurarea volumului de lichid scurs, precum și declanșarea și, respectiv, oprirea unui cronometru electronic, corespunzătoare începerii, respectiv, opririi scurgerii lichidului, fiind realizate de o unitate (24) electronică, pe baza semnalelor electrice date de senzorul (4) interferometric cu laser, figura 2.

Rezumat

Invenția se referă la un aerometru electronic, destinat determinării, concomitente și cu precizie ridicată a densității, váscozității dinamice și váscozității cinematice a lichidelor. Aerometrul conform invenției este alcătuit dintr-un plutitor (1) gol și etanș, care este continuat cu un tub (2) prelungitor închis la partea superioară cu un capac (3) metalic lustruit care are rol de oglindă reflectorizantă, pentru un senzor (4) interferometric cu laser, plutitorul (1) fiind introdus într-un cilindru (5) metallic ce conține un lichid (l) de cercetat, cilindru (5), care este prevăzut, la partea inferioară, cu o piuliță (6) care prezintă un orificiu (o) calibrat de scurgere, destinat unui anumit domeniu de váscozitate, váscozitatea dinamică determinându-se prin măsurarea timpului de scurgere a unui volum precis de lichid, măsurarea volumului de lichid scurs, precum și declanșarea și, respectiv, oprirea unui cronometru electronic, corespunzătoare începerii, respectiv, opririi scurgerii lichidului, fiind realizate de o unitate (24) electronică, pe baza semnalelor electrice date de senzorul (4) interferometric cu laser, figura 2.

Abstract

The invention relates to an electronic areometer meant to determine automatically, concomitantly and with high precision the density, the dynamic viscosity and cinematic viscosity of liquids. According to the invention, the areometer comprises a hollow and sealed float (1) continuing with an extending tube (2) closed at the upper part by a polished metal cover (3) playing the role of a reflecting mirror for a laser interferometric sensor (4), the float (1) being introduced into a metal cylinder (5) containing the liquid (l) to be analyzed, said cylinder (5) being provided at the lower part with a nut (6) having a gauged discharge orifice (o), designed for a certain viscosity range, the dynamic viscosity being determined by measuring the time of discharge of a precise volume of liquid, measuring the discharged liquid volume and also the triggering and the stopping of an electronic chronometer, respectively, corresponding to the starting and stopping of the discharge of liquid, carried out by an electronic unit (24) on the basis of electric signals given by the laser interferometric sensor (4), figure 2.
Rezumat

Invenția se referă la un durometru care permite realizarea de încărcări de duritate cu solicitare statică, precum și cu solicitare dinamică. Durometrul conform invenției este alcătuit din următoarele componente: o bobină (1) electrică ce are miez (2) mobil, o celulă (3) dinamometrică, două armături (4 și 5) de condensator, ce fac parte dintr-un circuit oscilant rezonant, o tijă (6) de ghidare, niște ghidaje (7 și 8), un portpenetrator (9), un penetrator (10) care poate acționa static sau dinamic asupra unui material (11) de încercat, un arc (12) de compresie și un senzor inductiv diferențial, format din două bobine (13 și 14) și un miez (15) mobil, și o parte electrică și electronică, formată dintr-o unitate (16) electronică, dintr-o baterie de condensatoare (C₀) și din trei întrerupătoare (K₁, K₂ and K₃) automate, figura 1.

Abstract

The invention relates to a durometer allowing to carry out hardness tests with statical loading and also with dynamic loading. According to the invention, the durometer comprises the following components: an electric coil (1) with a mobile core (2), a dynamometric cell (3), two capacitor armatures (4 and 5) belonging to a resonant oscillating circuit, a guiding rod (6), some guides (7 and 8), a penetrator holder (9), a penetrator (10), which may act statically or dynamically upon a material (11) to be tested, a compression spring (12) and a differential inductive sensor consisting of two coils (13 and 14) and a mobile core (15), and an electronic and electric part consisting of an electronic unit (16), a bank of capacitors (C₀) and three automatic cut-outs (K₁, K₂ and K₃), figure 1.
Invenția se referă la un fotometru electronic portabil, pentru analiza apei. Fotometrul conform invenției este alcătuit dintr-o placă (1) de bază, două axe (2 și 3) de rotație, pe care sunt montate două roți (4 și 5) dințate identice, care se găsesc în antrenare reciprocă, fiecare roată continuându-se cu câte o coroană (6 și 7), prima coroană (6) fiind prevăzută cu un număr de locașuri cilindrice, de exemplu, șase, în care sunt poziționate vertical niște tuburi (8₁-₆) din sticlă, ce conțin niște probe de apă de analizat, iar cea de-a doua coroană (7) fiind prevăzută cu șase sisteme (D₁-₆) dozatoare, care conțin câte un reactiv specific unei anumite specii chimice prezente în proba de apă, și cu un divizor mecanic, cu un increment unghiular de 60⁰, care îi împarte pe rând fiecare probă de apă în dreptul unuia dintre sistemele (D₁-₆) dozatoare care, prin acționare manuală, transferă în proba de apă un reactiv specific, proba de apă fiind adusă în dreptul unei fotobariere care realizează fotometrarea apei la o lungime de undă specifică unei specii chimice urmărite, lungimile de undă specifice fiind asigurate de niște filtre corespunzătoare, montate în fața locașurilor pentru probele de apă, figura 1.

Abstract

The invention relates to a portable electronic photometer for water analysis. According to the invention, the photometer comprises a base plate (1), two axes (2 and 3) of rotation whereon there are mounted two identical toothed wheels (4 and 5) which reciprocally drive each other, each wheel continuing with a crown (6 and 7), the first crown (6) being provided with a number of cylindrical seats, six for example, wherein there are vertically located some glass tubes (8₁-₆) containing some water samples to be analyzed, and the second crown (7) being provided with six dispensing systems (D₁-₆) containing a reagent specific to a chemical species present in the water sample, and a mechanical divider, with an angular increment of 60⁰ having the role of bringing successively each sample in front of one of the dosing systems (D₁-₆) which, by manual handling, transfers a specific reagent into the water sample, then said water sample being brought in front of a photobARRIER which carries out the photometering of the water at a wavelength specific to a desired chemical species, the specific wavelengths being ensured by some suitable filters mounted in front of the water samples, figure 1.
Rezumat

Invenția se referă la un durometru care permite realizarea de încercări de duritate cu solicitare statică, precum și cu solicitare dinamică. Durometrul conform invenției este alcătuit din următoarele componente: o bobină (1) electrică ce are miez (2) mobil, o celulă (3) dinamometrică, două armături (4 și 5) de condensator electric, o tijă (6) de ghidare, niște ghidaje (7 și 8), un portpenetrator (9), un penetrator (10), un arc (12) de compresie, un senzor (13) incremental de deplasare, un buton (14) cu excentric și o parte electronică și electrică, formată dintr-o unitate (16) electronică centrală, o baterie condensatoare (C0) și trei întrerupătoare (K1, K2 și K3) automate, figura 1.

Abstract

The invention relates to a durometer allowing to carry out hardness tests with statical loading and also with dynamic loading. According to the invention, the durometer comprises the following components: an electric coil (1) with a mobile core (2), a dynamometric cell (3), two armatures (4 and 5) of electrical capacitor, a guiding rod (6), some guides (7 and 8), a penetrator holder (9), a penetrator (10), a compression spring (12), a displacement incremental sensor (13), a button (14) with eccentric, an electronic and electrical part consisting of a central electronic unit (16), a bank of capacitors, (C0) and three automatic cut-outs (K1, K2 and K3), figure 1.
Invenția se referă la un produs alimentar sub formă de vafă, și la un procedeu pentru prepararea acestuia. Produsul conform invenției conține 28,26% fibre, din care 19% fibre solubile, 52,62% carbohidrați, 1,26% proteine, 0,96% substanțe minerale, 0,29% lipide, cu valoarea energetică de 294,67 kcal/100 g sau 1232,58% kJ/100 g. Procedeul conform invenției constă din amestecarea prin malaxare a materiilor prime constând din făină de grâu, fibră de mazăre, inulină, făină din semințe de struguri, lapte praf degresat, ulei de floarea soarelui, sare, bicarbonat de sodiu și apă, rezultând un aluat omogen care se coace în forme, la o temperatură de 145 ... 150°C, timp de 2,5 ... 3 min., rezultând un produs cu un conținut de umiditate de 1 ... 2%, care se taie mecanic la forma și dimensiunea dorită.

PATENT RO127472 / 2012

Wafers with a high content of fibres and process for preparing the same

The invention relates to a food product as wafer and to a process for preparing the same. The claimed product comprises 28.26% fibres where from 19% are soluble fibres, 52.62% carbohydrates, 1.26% proteins, 0.96% mineral substances, 0.29% lipids with an energetic value of 294.67 kcal/100 g or 1232.58% kJ/100 g. The claimed process consists in mixing the raw materials consisting of wheat meal, pea fibers, inulin, grape seed meal, defatted powder milk, sunflower oil, salt, sodium bicarbonate and water, to result a homogenous dough which is baked in forms at a temperature of 145...150 °C for 2.5...3 min, there resulting a product with a moisture content of 1...2% which is mechanically cut at desired shape and size.
Rezumat
Invenția se referă la un produs hipocaloric sub formă de biscuiți și la un procedeu pentru prepararea acestuia. Produsul conform invenției cuprinde 10,71% fibre, 48,61% carbohidrați, 10,89% proteine și 2,36% lipide, având o valoare energetică de 267,75 kcal/100g. Procedeul conform invenției constă din obținerea unei emulsii din apă, polidextroză, inulină, fibră de mazăre, ouă praf, grăsime vegetală nehidrogenată, lapte praf degresat, făină din semințe de struguri, sare de bucătărie, bicarbonat de sodiu, bicarbonat de amoniu și aromă de rom, la care se adaugă făină, amestecul se malaxează, obținându-se un aluat care se modelează prin presare și se coace progresiv, în trei zone ale cuptorului, având temperaturile în intervale 220 ... 260°C, 280 ... 320°C și 260 ... 230°C, după care urmează răcirea în contact cu aerul până la o temperatură de 25 ... 30°C, din care rezultă un produs cu o valoare energetică de 265 kcal/100 g.

Abstract
The invention relates to a hypocaloric product as biscuits and to a process for preparing the same. According to the invention, the product comprises 10.71 % fibres, 48.61 % carbohydrates, 10.89% proteins and 2.36% lipids, having an energetic value of 265.75 kcal/100 g. According to the invention the process consists in preparing an emulsion of water, polydextrose, inuline, pea fibre, powdered eggs, non-hydrogenated vegetal fat, low-fat powdered milk, flour of grape seed, common salt, sodium bicarbonate, ammonium bicarbonate, rum flavouring, where to flour is added, the mixture is mixed to obtain a dough which is shaped by pressing and is progressively baked in three areas of the oven having the temperature in the ranges of 220...260 DEG C, 280...320 DEG C and 260...230 DEG C, further on cooled in contact with air down to a temperature of 25...30 DEG C, there resulting a product with an energetic value of 265 kcal/100 g.
Rezumat
Prezentă învenție se referă la un produs alimentar sub formă de napolitană și la un procedeu pentru obținerea acestuia. Produsul conform învenției cuprinde 20,22% fibre, din care 10% fibre solubile, 38,47% carbohidrați, 15,20% lipide și 0,96% proteine. Procedeul conform învenției constă din prepararea mai întâi a unei forme de vafă dintr-un aluat cuprinzând faină de grâu, fibră de mazăre, sare de bucătărie, bicarbonat de sodiu, bicarbonat de amoniu și apă, care se coace la o temperatură de 225 ... 230°C, timp de 2,5 ... 3 min., apoi se prepară o cremă din sucro-esteri, grăsimi nehidrogenată, polidextroză, lapte praf degresat, inulină, faină din semințe de struguri, lecitină de soi, sare și aromă de rom, care se omogenizează prin malaxare la 20 ... 25°C, timp de 60 ... 75 min. cu înglobare de aer, după care se asamblează vafă cu cremă, rezultând un produs cu o valoare energetică de 339 kcal/100 g.

Abstract
The present invention relates to a food product as wafer and to a process for preparing the same. The claimed product comprises 20.22% fibres, where from 10% represent soluble fibres, 38.47% carbohydrates, 15.20% lipids and 0.96% proteins. The claimed process consists in preparing first a wafer form from a dough consisting of wheat meal, pea fiber, common salt, sodium bicarbonate, ammonium bicarbonate and water, which is baked at a temperature of 225...230 DEG C for 2.5...3 min, then there is prepared a cream from sucroesters, non-hydrogenated vegetable fat, polydextrose, defatted powder milk, inulin, grape seed meal, soy lecithin, salt, rum flavour, which is homogenized by mixing at 20...25 DEG C for 60...75 min with air incorporation, then the wafer is assembled with the cream, there resulting a product with an energetic value of 339 kcal/100g.
Procedeu de obţinere a unei nanodispersii uleioase cu capacitate regenerativă

Autors: Hagiu Bogdan – Alexandru; Sandu Ion; Vasilache Violeta; Tura Vasile; Mangalagiu Ionel; Mungiu Ostin Costel; Filote Constantin; Sandu Andrei - Victor
Clasificarea internaţională: A61K9/10
Prioritate: RO20100001216 20101126

Rezumat

Invenţia se referă la un procedeu de obţinere a unei nanodispersii uleioase cu capacitate regenerativă a ţesuturilor. Procedeul conform invenţiei constă din dispersarea în suportul matriceal, constând din ulei de floarea - soarelui pentru uz injectabil în concentraţie de 2,5 ... 5,0 ppm, prin agitare cu 300 rot/min, fie a argintului coloidal cu granulaţie de 5 ... 10 nm, peliculizat cu polivinilpirolidonă, fie a unor nanoparticule de argint obţinute din azotat de argint prin precipitare cu citrat de sodiu şi stabilizate în sistem apos, în prezenţa polivinilpirolidonei, rezultând o emulsie grasă de apă în ulei, din care se obţine nanodispersia uleioasă din argint coloidal, cu o dimensiune a particulelor de maximum 10 nm, prin aplicarea unui vid de 0,85 at la o temperatură de 75 ... 80°C, timp de 20 ... 30 min., nanodispersia fiind ambalată în fiole care se păstrează la temperaturi sub 10°C.

PATENT RO127723 / 2012

Process for preparing an oil nanodispersion with regenerative capacity

The invention relates to a process for preparing an oily nanodispersion with tissue regeneration capacity. According to the invention, the process consists in the dispersion, by stirring at 300 rpm, in the matrix support consisting of sunflower oil for injectable use, in a concentration of 2.5...5.0 ppm, of either the colloidal silver with a grain size of 5...10 nm, film-coated with polyvinylpyrrolidone, or some silver nanoparticles obtained from silver nitrate by precipitation with sodium citrate and stabilized in an aqueous system, in the presence of polyvinylpyrrolidone, resulting in a fatty water-in-oil emulsion wherefrom there is obtained the oily nanodispersion of colloidal silver having a particle size of 10 nm, at the most, by applying a vacuum of 0.85 at, at a temperature of 75...80 DEG C, for 20...30 min, the said nanodispersion being packaged as vials to be stored at temperatures of less than 10 DEG C.
65. BREVET RO127301

Procedeul de electrodepunere uniformă a nichelului pe support de cupru

Autori: Vasilache Violeta; Sandu Andrei – Victor; Filote Constantin; Sandu Ion

Clasificare internațională: A21D2/36

Prioritate: RO20100000946 20101006

Rezumat

Învenția se referă la un procedeu de electrodepunere uniformă a nichelului pe suport de cupru sau fier cuprat, în prezența polivinilpirolidonelui ca agent activ de suprafață, utilizat în industria constructoare de mașini. Procedeul conform învenției constă în obținerea unor pelicule pasivante subțiri, compacte și uniforme de Ni, prin utilizarea unor băi de tip Watts și folosirea unor soluții acide pe bază de NiSO₄ 6H₂O- 240g/l și NiCl₂ 6H₂O- 45g/l; ca sistem tampon se utilizează o cantitate de 30g/l de acid boric, iar ca agent activ de suprafață folosește 5g/l de polivinilpirolidonă, electrodepunerea utilizând un domeniu al temperaturilor de lucru cuprins între 40…65°C, și densități ale curentului electric cuprinse între 100…300 mA.

PATENT RO127301

Process for the uniform electrodeposition of nickel on copper support

Abstract

The invention relates to a process for the uniform electrodeposition of nickel on a copper or copper-coated iron carrier in the presence of polyvinylpyrrolidone as surface active agent, used in the machine building industry. According to the invention, the process consists in preparing some thin compact and uniform passivating films of Ni, by using some Watts-type baths and by using acid solutions based on NiSO₆HO - 240g/l and NiCl₆HO - 45g/l as buffer system there is used an amount of 30g/l of boric acid and an amount of 5g/l of polyvinylpyrrolidone as a surface active agent, the electrodeposition using a working temperature range of 40...65 DEG C and a current density of 100...300 mA.
Invenția se referă la un procedeu de electroddepunere uniformă și lucioasă a nichelului pe suport de cupru sau fier cuprat, în prezența polivinilpirolidonei ca agent activ de suprafață, utilizat în industria constructoare de mașini. Procedeul conform invenției este caracterizat prin aceea că, pentru obținerea unor pelicule pasivizate subțiri, compacte și uniforme utilizând băile de tip Watts, folosește soluții acide pe bază de NiSO$_4$ $6H_2O$ - 240g/l și NiCl$_2$ $6H_2O$ - 45g/l; utilizând ca sistem tampon, acidul boric -30g/l, și ca agent activ de suprafață, polivinilpirolidona - 5g/l, domeniul temperaturilor de lucru cuprinse între 50...65°C, și densități ale curentului electric cuprinse între 300...500 mA.

PATENT RO127202 / 2012

Process for uniform bright deposition of nickel on copper surfaces

The invention relates to a process for uniform and bright electrodeposition of nickel on copper or copper-plated iron support, in the presence of polyvinyl pyrrolidone as surface-active agent, meant to be employed in the machine building industry. According to the invention, the process is characterized in that, with a view to obtaining thin compact uniform passivated films employing Watts-type baths, it uses some acid solutions based on NiSO$_4$.6HO - 240 g/L and NiCl$_2$.6HO - 45 g/L, while using the boric acid - 30 g/L as a buffer system and polyvinyl pyrrolidone - 5 g/L as a surface-active agent, the working temperature range being of 50...65 DEG and the current density range of 300...500 mA.
Anul 2011

67. BREVET RO125631 / 2011
Proceedu și aparat pentru determinarea concentrației

Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei
Clasificarea internațională: G01J3/28; G01N21/64
Prioritate: RO2008000908 20081120

Rezumat

1. Procedeu pentru determinarea concentrației, caracterizat prin aceea că acesta constă în fotometrarea intensității radiației de fluorescență în timpul traversării unui canal cilindric al unei celule de curgere sub acțiunea efectului deplasării pistonului unei seringe de dozare, soluția de analizat fiind aspirată/refulată in situ în mediul de cercetat prin intermediul unui ac de seringă lung, măsurarea intensității fluoroценiei efectuându-se la un unghi de 180º față de direcția radiației luminoase incidente și la un unghi de 90º față de direcția de curgere a lichidului, fiind folosit un pachet de fibre optice, un minispectrometru echipat cu rețea de difracție fixă și detector Diode Array, precum și un calculator portabil, determinarea concentrațiilor speciilor fluorescente fiind posibilă atât în timpul aspirării soluției în seringă, cât și în timpul refulării acesteia din seringă, figura 1.

2. Aparat pentru determinarea concentrației, pentru aplicarea procesului de la revendicarea 1. caracterizat prin aceea că în vederea determinării concentrației speciilor chimice fluorescente dintr-o soluție, este folosit un aparat format dintr-un sistem de vehiculare a soluției cercetate, precum și dintr-o structură fotometrică electronică portabilă modulară, compuse, la rândul lor, dintr-o seringă (1) de dozare, o sursă (2) luminoasă de excitare monocromatică de tip LED, un pachet de fibre optice (3) și un pachet de fibre optice centrale (4), un ac (8) de seringă lung, un filtru (9) tipizat de unică folosiință, destinat filtrării soluțiilor fluorescente tulburi, precum și dintr-o unitate (7) de calcul, figura 1.

PATENT RO125631 / 2011
Process and apparatus for determining the concentration

Abstract

1. Concentration determination method consists of photometric measurement of fluorescence radiation intensity while crossing a cylindrical channel of a flow cell under the action of a piston displacement effect of a dosing syringe, the sample solution being aspirated / repressed in situ in the environment investigated on through a long syringe neene, the measurement of fluorescence intensity is made at an angle of 180º against the direction of incident light radiation and at an angle of 90º against the liquid flow direction, using a bundle of optical fibers, a minispectrometer equipped with a fixed diffraction grating and Diode Array detector, and a laptop computer, making possible the determination of concentration of the fluorescent species both while the solution is aspirated into syringe and while it is repressed into syringe, figure 1.

2. Apparatus for concentration determination, for process application according to requirement I including a solution-vehiculating system as well as an electronic modular portable photometric structure composed of a dosing syringe (1), a monochromatic excitation light source of LED type (2), a bundle of six irradiation optical fibers (3), placed radially around another central optical fiber (4) used at the transmission of fluorescence radiation towards a minispectrometer (6), a solution -flow cell (5), provided with a cylindrical groove (C) for liquid displacement under the handling action of a plunger of the dosing syringe (1), a long needle (8), a standardized unique-use filter (9), meant to filter turbid fluorescent solutions as well as a computer unit (7), figure 1.

Fig. 1.
Brevet RO126672 / 2011
Biosenzor portabil pentru glucoză și colesterol
Autors: Gutt Sonia; Gutt Gheorghe; Gutt Andrei; Pșibilschi Alina Mihaela
Clasificarea internațională: C12N11/18; C12Q1/26; G01N27/327; G01N33/49
Prioritate: RO2010000162 20100218
Rezumat
Prezenta învenție se referă la un biosenzor combinat, pentru determinarea concomitentă, in situ, a concentrației de glucoză și a colesterolului din sânge, pe baza principiului conductometric, alcătuit dintr-o structură portabilă, formată dintr-o parte electronică microprocesată (1), echipată cu un display alfanumeric, și dintr-un kit biochimic de unică folosință, dintr-un material plastic lamelar (2), având un perete despărțitor median (3), două perechi (4 și 5) de electrozi lamelari subțiri, lipiți pe suport (2), pe care sunt depuse două straturi (6 și 7) de amestec omogen de polimer conducător electric și glucoz-oxidază, respectiv, colesterol-oxidază, concentrațiile de glucoză și colesterol determinându-se prin calcul pe baza corespondenței dintre conductivitatea apei oxigenate, rezultate din cele două reacții, și curba cinematică de oxidare, figura 1.

PATENT RO126672 / 2011
Portable biosensor for glucose and cholesterol
Abstract
The invention relates to a combined biosensor for the simultaneous in-situ determination of the blood glucose concentration and cholesterol based on the conductometric principle, comprising a portable structure consisting of a microprocessed electronic component (1) provided with an alphanumeric display and a disposable biochemical kit made of a bladelike plastic (2) having a medial partition wall (3), two pairs of thin blade electrodes (4 and 5) attached to the support (2), coated with two layers (6 and 7) of homogenous mixture of electro-conductive polymer and glucose-oxidase and cholesterol-oxidase, the glucose and cholesterol concentrations being calculated based on the correlation between the conductivity of the oxygenated water resulting from the two reactions and the oxidation kinetic curve, figure 1.
Rezumat
Prezentă învenție se referă la un biosenzor de laborator pentru determinarea glucozei și a colesterolului din sânge, prin metoda amperometrică, alcătuit dintr-un corp (1) în care este amplasată o unitate amperometrică ce măsoară curentul de electroliză și prelucrează și afișează datele pe un display electronic (2), două sisteme de dozare în exteriorul corpului (1), unul pentru glucozoxidază și unul pentru colesterol-oxidază, formate, fiecare, din piulițele randalinate (3 și 4), cîțietele divizor cu bilă (5 și 6), un arc distantator (7), șuruburile (8 și 9) de presare, șîtufurile cîlindrice (10 și 11) pentru împiedicarea deplasării pe verticală a piulițelor, ștuiele (12 și 13) de perforare, tuburile capilare (14 și 15) din plastic, o celulă de amestecare și reacție (16), cu un canal (C) și doi electrozi lamelari (17 și 18), din platină. În partea exterioară a corpului (1) se găsește înfiletate flacoanele (19 și 20) conținând reactivii pentru determinări și butoanele de pornire/oprire și de comutare a analizei, figura 1.

Laboratory biosensor for glucose and cholesterol

Abstract
The invention relates to a laboratory biosensor for determining blood glucose and cholesterol by using the amperometric method, comprising a body (1) in which there is placed an amperometric unit which measures the electrolysis current and processes and displays the resulting data on an electronic display (2), two dosing systems at the external part of the body (1), one for glucose-oxidase and one for cholesterol-oxidase, each of them comprising the knurled nuts (3 and 4), the ball ratchet splitters (5 and 6), a spacing spring (7), the pressure screws (8 and 9), the cylindrical pins (10 and 11) preventing the nuts from moving vertically, the perforating tools (12 and 13), the capillary plastic tubes (14 and 15), a mixing and reaction cell (16) with a channel (C) and two platinum blade electrodes (17 and 18). At the external part of the body (1) there are screwed the flasks (19 and 20) containing the reagents for performing the tests and the on/off and switch buttons, figure 1.
Invenția se referă la un set de cuve fotometrice, destinate folosirii pe aparate modulare comбинate, de tip spectromicroscop, în scopul determinării concomitente a compoziției și concentrației speciilor chimice pe cale spectrală, precum și în scopul urmăririi imaginii microscopic sunt biologice sau chimice, din soluții lichide, pe cale optoelectronică. În acest scop este folosită o structură modulară formată dintr-un microscop (M) optic de transmisie, un spectrometru (S) miniatural cu detector diode-array și mai multe module (MC1, MC2, MC3) de cuve spectrometrice, întregul sistem fiind gestionat de tehnica de calcul (T). Primul modul de cuve (MC1) este destinat determinărilor spectrofotometrice clasice, fiind format dintr-un corp (16) din polimetacrilat de metil transparent, ce are în compunere două cuve (C1 și C2), una dintre cuve fiind destinată probei lichide de analizat, iar cealaltă solvențului, partea superioară a corpului (16) fiind acoperită cu o lamelă (17) subțire, destinată îndepărtării excesului de probă lichidă într-un canal (c1) colector. Al doilea modul de cuve (MC2) este destinat analizelor în serie și este format dintr-un corp (18) din polimetacrilat de metil transparent, având în compunere un șir de opt cuve (C1,...,C8), prima cuvă (C1) fiind destinată solvențului, iar celelalte șapte, diferite probe de diverse compoziții și concentrații, partea superioară a corpului (18) fiind acoperită cu o lamelă (19) subțire, destinată îndepărtării excesului de probă într-un canal (c2) colector. Al treilea modul de cuve (MC3) este destinat determinării limitei de liniaritate a legii Lambert-Beer în funcție de grosimea de strat și de concentrație, și este format dintr-un corp (20) din material plastic transparent, având în compunere opt cuve (C1,...,C8), iar partea superioară a corpului (20) fiind acoperită cu o lamelă (19) subțire, destinată îndepărtării excesului de probă într-un canal (c3) colector, figura 4.

The invention relates to a set of photometric vats meant to be used in modular apparatuses with the view of determining concomitantly the composition and the concentration of chemical species on spectral way, and also with the view of tracking the microscopic image of some biological or chemical species in liquid solutions on optoelectronic way. For this purpose, there is used a modular structure comprising an optical transmission microscope (M), a miniature spectrometer (S) with diode array detector and several modules (MC1, MC2, MC3) of spectrometric vats, the entire system being managed by a computing technique (T). The first vat module (MC1) is destined to classic spectrophotometric determinations and comprises a body (16) of transparent methyl polymethacrylate and consists of two vats (C1 and C2), one vat being destined to the liquid probe to be analysed and the other one to the solvent, the top of the body (16) being covered with a thin lamella (17) meant to remove the liquid probe in excess into a collecting channel (c). The second vat module (MC2) is destined to the serial analyses and comprises a body (18) of transparent methyl polymethacrylate and consists of a row of eight vats (C1...C8), the first vat (C1) being destined to the solvent and the other seven to different probes of various compositions and concentrations, the top of the body (18) being covered with a thin lamella (19) meant to remove the probe in excess into a collecting channel (c2). The third vat module (MC3) is destined to determine the linearity limit of Lambert-Beer law depending on the layer thickness and concentration and it consists of a plastic transparent body (20) and comprises eight vats (C1...C8) and the top of the body (20) is covered with a thin lamella (19) meant to remove the probe in excess into a collecting channel (c3), figure 4.
Rezumat

Invenția se referă la un aparat destinat determinării durății dinamice a materialelor metalice și nemetalice. Aparatul conform invenției este format dintr-o parte mecanică și o parte electronică, montate într-un corp (1) metallic, partea mecanică, având rol de solicitare dinamică a unui material (2) încercat, este formată dintr-un penetrator (3) sferic, din carbură de wolfram, un port-penetrator (4), un senzor (5) piezoelectric de forță dinamică, o pârghie (6) articulată cu un rulment (7), o camă (8) interschimbabilă, un buton (9) manual de încărcare - descărcare, un braț (10) așezat la 90⁰ față de axul pârghiei (6), o contragreutate (11) reglabilă, o talpă (17) de adaptare și un șurub (18) cu talpă reglabilă, prevăzut cu o contrapliță (19) de blocare, iar partea electronică este alcătuită dintr-o unitate electronică (20) ce conține un microcontroler programat, o sursă de alimentare și un display (21) alfanumeric, figura 1.

Abstract

The invention relates to an apparatus meant to determine the dynamic hardness of metallic and non-metallic materials. According to the invention, the apparatus comprises a mechanical part and an electronic part mounted in a metallic body (1), the mechanical part, which plays a role in the dynamical loading of the material (2) to be tested, comprises a spherical penetrating device (3) made of tungsten carbide, a holder (4) for the penetrating device, a piezoelectric sensor (5) for the dynamic force, a lever (6) articulated with a bearing (7) an interchangeable cam (8), a manual button (9) for loading-unloading, an arm (10) arranged at 90 DEG in relation to the axle of lever (6), an adjustable counterweight (11), an adapting sole (17) and a screw (18) with an adjustable sole provided with a blocking counter-nut (19), and the electronic part comprises an electronic unit (20); consisting of a programmed microcontroller, a power supply and an alpha-numerical display (21), figure 1.
Invenția se referă la un material pentru ecranare electromagnetică, în vederea protejării spațiilor de locuit împotriva radiațiilor electromagneticice de înaltă frecvență, din mediul înconjurător. Materialul conform invenției este alcătuit din niște cepuri (1) din lemn, având formă de discuri cilindrice, destinate înlocuirii nodurilor din cherestea, pe a căror față circulară inferioară sunt aplicate, în unul sau mai multe canale frezate concentric, unul sau mai multe inele (2) realizate din cupru, inelele (2) reprezentând spire electrice în scurtcircuit, care consumă energia de radiație de înaltă frecvență, indusă din mediul înconjurător, prin intermediul curentilor turionari ce se formează în spire, precum și prin intermediul efectului termic rezistiv al spirelor, producând în acest fel o ecranare electromagnetică a zonelor vecine, figura 3.

PATENT RO126684 / 2011
Electromagnetic shielding materials
Abstract
The invention relates to some electromagnetic shielding materials meant to protect dwelling places against high frequency electromagnetic radiation from the environment. According to the invention, the material comprises some wooden tenons (1) shaped as cylindrical disks, meant to replace the knots on the sawn timber, on whose circular low surface there are applied in one or more concentrically milled channels, one or more copper rings (2), said rings (2) being electrical short-circuited turns consumming the high frequency radiation energy induced from the environment by means of eddy currents generated within the turns and by means of the resistive thermal effect of the turns producing thereby an electromagnetic shielding of neighbouring areas, figure 3.
Rezumat

Invenția se referă la materiale de construcții pentru ecranarea electromagnetică a încăperilor, prin absorbția radiațiilor electromagnetice de înaltă frecvență, din mediul înconjurător. Ecranarea electromagnetică, conform invenției, se realizează prin niște inele (I) din cupru, de diverse diametre, distribuite uniform în interiorul unor materiale de construcție de tip cărămizi și bolțari, plăci fibrolemnoase simple sau placate cu melamină sau furnir, materiale stratificate, din lemn masiv, sau lipite pe spatele unor lambriri din lemn sau din material plastic, pentru realizarea inelelor (I) din cupru fiind folosită stânga concentrică repetată a acestora, din fășii de tablă, debitarea acestora cu fascicul laser din țevi subțiri, de cupru, de diverse diametre exterioare, sau sudarea automată a capetelor unor sârme din cupru, după ce sârmele au fost în prealabil bobinate pe tambure de diferite diametre, tăiate ulterior de-a lungul generatoarei tamburului și sudate la capete, figura 2.

PATENT RO126683 / 2011

Building materials for the electromagnetic shielding of rooms

Abstract

The invention relates to building materials for the electromagnetic shielding of rooms, by the absorption of high frequency electromagnetic radiations from the environment. The electromagnetic shielding is carried out by some copper rings (I) of various diameters, uniformly distributed inside some building materials such as bricks, roof bricks and simple and melamine-plated or veneer-plated fibre boards, stratified materials from massive wood or stuck to the back side of some wood or plastic paneling, for carrying out the copper rings (I), there being used the repeated concentric stamping thereof from steel sheet strips, cutting the same with a laser beam from thin copper pipes of various outside diameters or the automatic welding of the ends of copper wires, after the wires have been previously wound on drums of various diameters, cut afterwards along the drum generatrix and welded at their ends, figure 2.
Rezumat

Invenția se referă la un monocromator destinat alimentării spectrofotometrelor cu radiație luminoasă monocromatică, prin intermediul unui grup de leduri, fiecare emițând pe o anumită lungime de undă, specifică unei anumite specii chimice, în felul acesta fiind posibilă analiza spectrofotometrică cantitativă și calitativă a unei soluții de analizat. Monocromatorul conform învenției este alcătuit dintr-un corp (1) rotativ, care conține un sistem de indexare și punere sub tensiune cu bilă (2) și arc (3), pentru selectarea, centrarea și alimentarea electrică a unor leduri (L₁...L₈), atunci când acestea sunt aduse, prin rotația manuală a corpului (1) rotativ, pe traseul optic al unui spectrometru de absorbtie moleculară, spectrometrului format, la rândul său, dintr-un grup (4) de lentile colimatoare, o diafragmă (5) optică, o cuvă (6) cu soluție (s) de analizat, un detector (7) fotoelectric, un amplificator (8) electronic și un sistem (9) de achiziție, prelucrare și afișare date, figura 1.

Abstract

The invention relates to a monochromator meant to supply the spectrophotometers with a monochromatic light radiation by means of a group of LEDs, each emitting on a certain wavelength specific to a certain chemical species, thereby being possible to perform a quantitative and qualitative spectrophotometric analysis of a solution to be analyzed. According to the invention, the monochromator comprises a rotating body (1) containing a system comprising a ball (2) and a spring (3) for indexing and putting under voltage in order to select, center and power supply some LEDs (L₁...L₈), when the LEDs are brought by the manual rotation of the rotary body (1) on the optical path of a molecular absorption spectrometer formed in its turn of a group (4) of collimating lenses, an optical diaphragm (5), a tank (6) with the solution (s) to be analyzed, a photoelectric detector (7), an electronic amplifier (8) and a system (9) for data acquisition, processing and display, figure 1.
Procedeul de ecranare electromagnetică

Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei; Stroe Silviu; Alexiuc Florin Cristian
Clasificarea internaţională: E04B1/92; H01Q17/00
Prioritate: RO20100000155 20100218

Rezumat

Invenţia se referă la un procedeu de ecranare electromagnetică a spaţiilor de locuit de efectul radiaţiei electromagneticice de înaltă frecvenţă, din mediul înconjurător. Procedeul constă în folosirea unor şiruri de oscilatoare de tip LC, lipite pe nişte benzi de polietilenă, introduse în materiale de construcţii de tip plăci, în timpul de fabricaţie al acestora, fiecare oscillator de pe aceste benzi fiind acordat pe o frecvenţă specifică, pe care o absoarbe din mediul, energia de radiaţie electromagnetică fiind disipată sub formă de căldură, datorită rezistivităţii bobinei şi a pierderilor prin dielectric ale condensatorului. Oscilatoarele de pe benzele (5) de polietilenă sunt formate din nişte bobine (3 şi 4) plane, sub formă de spirală Arhimede, şi din nişte armături (1 şi 2) de condensator, sub formă de disc, obţinute din folie de aluminiu, prin erodare fotochimică sau ştanţare mecanică, dielectricul condensatorului fiind dat chiar de banda (5) de polietilenă, iar frecvenţa (f₀) de oscilaţie la rezonanţă fiind dată de numărul de spire al bobinelor (3 şi 4) şi de valoarea ariei (A) suprafeţei armăturilor (1 şi 2) condensatorului, figura 3.

PATENT RO126682 / 2011

Electromagnetic shielding process

The invention relates to a process for the electromagnetic shielding of dwelling places against the effect of high frequency electromagnetic radiation in the environment. The process consists in using rows of LC type oscillators soldered on some polyethylene strips inserted in plates-shaped type building material, during the fabrication process thereof, each oscillator on these strips being tuned on a specific frequency which the oscillator takes off from the environment, the energy of electromagnetic radiation being dissipated as heat due to the coil resistivity and the dielectric losses of the capacitor. The oscillators on the polyethylene strips (5) comprise some Archimede spiral-shaped plane coils (3 and 4) and some capacitor armatures (1 and 2) in the shape of a disk, manufactured from aluminum foil by photochemical erosion or mechanical stamping, the dielectric of the capacitor being given by the very polyethylene strip (5), the oscillation frequency (f) to resonance being given by the number of coil turns (3 and 4) and the value of area (A) of the capacitor armatures (1 and 2), figure 3.
Abstract
The invention relates to a portable spectromicroscope for in situ carrying out spectrometric and microscopic analysis of an opaque, solid, pulvorous or viscous material. According to the invention, the spectromicroscope comprises a probe (S), an electronic unit (E) and a portable computer (C) provided with a specific software, wherein the probe (S) consists of a cylindrical body (2) wherein an optical fibre (3) is divided into twelve fibres (4...4), radially arranged around another optical central fibre (5), from a group of optical focusing lenses (6) provided with a threaded fitting (7) and a blocking nut (8) and also an optical divider (9), and wherein the electronic unit (E) consists of a radiation source (12), a miniature spectrometer (13) with diode-array detector and a miniature video-camera (14). The probe (S) may be provided with a set of extending bodies (16) for the optical fibres (4...4 and 5), said bodies (16) being provided at the upper side with an optocoupler (15) and at the lower side either with an optical device (17) having a flooding window (f) and a miniature mirror (18) making possible the spectrophotometry of the solutions directly in containers or chemical and biochemical reactors, at various depths, or with an optical device (19) containing a mirror (20) with a total reflection, the threaded fitting (7) and the group of optical focusing lenses (6), making possible the spectrophotometry and the microscopic examination of the limiting layer between the solution to be analysed and the wall of storage container, figure 1.
Rezumat

Invenția se referă la un turbidimetru ce permite determinarea concomitentă a turbidității și conductivității apei. Turbidimetrul conform invenției este alcătuit dintr-o sursă (1) de radiație, un filtru (2) optic, o fotocelulă (3), o cuvă (4 sau 5) conținând o probă (p) de apă de analizat, cuvă fiind realizată din sticlă și având presații elastic, pe peretele ei, prin intermediul a două lamele (6, 7 sau 8, 9) din oțel, doi electrozi (10 și 11) metalici plani sau doi electrozi (12 și 13) metalici cilindrici, care fac parte dintr-un circuit oscilant de înaltă frecvență, de tip LC, măsurarea turbidității fiind realizată pe principiul fotometric, iar măsurarea conductivității electrolitice a apei, pe principiul conductometric de înaltă frecvență, fără contact, datele fiind procesate și afișate de o unitate (14) electronică centrală, figura 1.

Abstract

The invention relates to a turbidity meter which allows determining concomitantly the turbidity and conductivity of water. According to the invention, the turbidity meter comprises a radiation source (1), an optical filter (2), a photocell (3), a vat (4 or 5) containing a sample (p) of water to be analysed, the vat being made of glass and having on its wall pressed by means of two steel blades (6, 7 or 8, 9), two plane metal electrodes (10 and 11) or two metal cylindrical electrodes (12 and 13) belonging to a LC-type high frequency oscillating circuit, the measurement of turbidity being achieved on the photometric principle, while the measurement of the electrolytic conductivity of water is achieved on the high frequency contactless conductometric principle, the data being processed and displayed by a central electronic unit (14) figure 1.
The invention relates to an ultrasonic turbidity meter meant to determine the solution turbidity with increased precision. According to the invention, the turbidity meter comprises a monochromatic radiation source, a vat (2) containing a cloudy solution (s) to be analysed, a piezoelectric quartz oscillator (3), a high frequency generator (5), a photocell (6) for measuring the light radiation passed through the solution (s) and an electronic unit (7) for data acquisition, processing and display, figure 1.
Unitate analitică modulară

Auitori: Gutt Gheorghe; Gutt Sonia

Clasificarea internaţională: G01J1/04; G01J1/42; G01N21/62

Prioritate: RO20090000858 20091023

Rezumat

Invenţia se referă la o unitate analitică modulară pentru analiză chimică calitativă, cantitativă şi dozarea unei soluţii multi- sau bicomponent. Unitatea analitică, conform invenţiei, este compusă dintr-o seringă (A) de dozare sau, după caz, dintr-un dozator electronic, dintr-un dispozitiv (B) fotometric care se ataşează prin înfiileare de seringa (A) de dozare şi dintr-un sistem optoelectronic (C) cuplat cu fibră optică cu dispozitivul (B) fotometric, în care dispozitivul (B) fotometric este alcătuit dintr-un corp (5) prevăzut cu un canal (a) de aspiraţie a unei soluţii, având o supapă de sens cu arc (6) şi bilă (7), un canal (r) de refulare prevăzut şi el cu o supapă de sens cu arc (8) şi bilă (9), un canal (c) de curgere comun, precum şi un canal optic de tip fotobarieră, compus la rândul lui din două fibre optic (10 şi 11) pentru fotometrarea soluţiei aspirate, respectiv, a celei refulate, ce curge prin canalul (c) comun înspre sau dintr-o seringă (A) dozatoare, legătura fibrelor optic (10 şi 11) cu sistemul optoelectronic (C) fiind realizată prin intermediul a doi conectori (12 şi 13) şi a două cabluri (14 şi 15) de transmisie prin fibră optică, sistemul optoelectronic (C) fiind alcătuit dintr-o sursă (19) de radiaţie echipată cu un set de filtre (20) optice, dintr-un spectrotomat (21) miniatural cu detector Diode - Array şi dintr-un calculator (22) electronic prevăzut cu un program de calcu pentru achiziţia şi prelucrarea automată a datelor experimentale, figura 1.

PATENT RO126498 / 2011

Modular analytical unit

The invention relates to a modular analytical unit for qualitative, quantitative chemical analysis and dosing of a multi- or bi-component solution. According to the invention, the analytical unit comprises a dosing syringe (A) or, as the case may be, an electronic dosimeter, a photometric device (B) which is screwed into the dosing syringe (A) and an optoelectronic system (C) coupled with the photometric device (B) through an optical fiber, wherein the photometric device (B) comprises a body (5) provided with a channel (a) for sucking in a solution, having a direction valve with spring (6) and ball (7), a discharge channel (r) also provided with a direction valve with spring (8) and ball (9), a common flow channel (c) and a photobarrier type optical channel comprising, in its turn, two optical fibers (10 and 11) for photometering the sucked in solution and the discharged one, respectively, said solution flowing through the common channel (c) to or from the dosing syringe (A), the connection of the optical fibers (10 and 11) with the optoelectronic system (C) being carried out by means of two optical fiber connectors (12 and 13) and two fiber optical transmission cables (14 and 15), the optoelectronic system (C) comprising, in its turn, a radiation source (19) equipped with a kit of optical filters (20), a miniature spectrophotometer (21) with a diode-array detector and an electronic computer (22) provided with a computing program for the automatic acquisition and processing of the experimental data, figure 1.
Echipament pentru determinarea variației de masă și a grosimii de strat

Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei

Clasificarea internațională: G01B7/06; G01N21/17; G01N21/55

Prioritate: RO20090000856 20091023

Rezumat

Invenția se referă la un echipament optoelectronic pentru determinarea variațiilor extrem de mici de masă și/sau grosime de strat activ biologic cu ajutorul rezonanței plasmonice de suprafață. Echipamentul conform învenției este alcătuit dintr-o prismă (1) optică, lipită prin intermediul unui strat subțire de ulei, cu indice de refracție ridicat, de o lamelă (2) din sticlă optică pe care este depus un strat (3) subțire de aur pur iar pe acesta un strat (4) subțire din material biologic activ dintr-o sursă (9) de radiație monocromatică de tip diodă laser sau led dintr-un detector (10) optoelectronic de tip Diode-Array, dintr-o unitate (11) electronică centrală și dintr-o unitate (12) de calcul. În cazul folosirii echipamentului pentru măsurători continue ale grosimii de strat, acesta este prevăzut cu o celulă (13) de curgere alimentată de o pompă (15) peristaltică, legată în by-pass cu un recipient sau un reactor (14) care conține materialul biologic analizat, figura 3.

PATENT RO126496 / 2011

Equipment for determining the mass variation and the layer thickness

Abstract

The invention relates to an optoelectronic equipment for determining extremely low variations of mass and/or thickness of a biologically active layer by means of surface plasmon resonance. According to the invention, the equipment comprises an optical prism (1), which adheres by means of a thin layer of oil with high refractive index to a thin plate (2) of optical glass on which there is deposited a thin layer (3) of pure gold, and on said layer there is deposited a thin layer (4) of biologically active material, a source (9) of monochromatic radiation of a laser diode or light emitting diode type, an optoelectronic diode-array type detector (10), a central electronic unit (11) and a computing unit (12). When the equipment is used for measuring continuously the layer thickness, it is provided with a flowing cell (13) supplied by a peristaltic pump (15) by-pass connected with a recipient or reactor (14) which contains the biological material to be analyzed, figure 3.
Vâscozimetrul electronic

Rezumat

Învenția se referă la un vâscozimetrul electronic, destinat determinării vâscozității mediilor lichide omogene, precum și a lichidelor cu suspensii. Vâscozimetrul conform învenției este format dintr-o parte (m) mecanică de antrenare a unui sistem (f) de frecare rotativ, scufundat într-un mediu de cercetat și dintr-o unitate (e) electronică, partea (m) mecanică fiind alcătuită dintr-un corp (1), un motor (2) de curent continuu, un disc (3) perforat montat pe axul rotorului motorului (2), un led (4) emițător și o fotodiodă (5) receptoare, sistemul (f) de frecare fiind alcătuit la rândul lui dintr-o mandrină (6), pe care se pot monta pe rând unul dintre corpurile (8, 9, 10, 11, 12 și 13) de frecare, și dintr-o tijă (7) cilindrică de antrenare pe care este trasat un reper (r) circular de scufundare, unitatea electronică (e) fiind alcătuită dintr-o sursă (14) de curent continuu, un numărător electronic (15), o unitate centrală (16) de achiziție, prelucrare și afișare date prevăzută cu un display (17) alfanumeric, un buton și un întrerupător (k) electric, figura 2.

PATENT RO126494 / 2011

Abstract

The invention relates to an electronic viscosimeter meant to determine the viscosity of homogenous liquid media and suspension liquids. According to the invention, the viscosimeter comprises a mechanical part (m) driving a rotary friction system (f) immersed into a medium to be tested and an electronic unit (e), the mechanical part (m) consisting of a body (1), a DC motor (2), a perforated disk (3) mounted on the rotor shaft of the motor (2), an emitting LED (4) and a receiving photodiode (5), the friction system (f) comprising in its turn a mandrel (6) where on there may be successively mounted one of the friction bodies (8, 9, 10, 11, 12 and 13), and a cylindrical driving rod (7) where on there is marked a circular immersion mark (r), the electronic unit (e) comprising a DC source (14), an electronic counter (15), a central unit (16) for data acquisition, processing and displaying provided with an alphanumerical display (17), a button and an electric switch (k), figure 2.
Rezumat

Învenţia se referă la un aparat pentru determinarea activităţii drojdiei. Aparatul conform învenţiei se compune dintr-o structură (A) de bază alcătuită dintr-un vas (1) de fermentaţie prevăzut cu un filet în care se introduce o masa (m) fermentativă formată din apă, glucoză şi drojdie, vasul (1) de fermentaţie dispunând de un sistem (2) de termostat electric de tip Peltier, la partea superioară a vasului (1) fiind prevăzută o structură (s) de măsurare alcătuită la rândul ei dintr-o membrană (4) elastică din oțel inoxidabil cu carea acționează bioxidul de carbon degajat prin procesul de fermentare a drojdiei, doi senzori (5 şi 6) electrorezistivi pentru măsurarea deformaţiei membranei (4), un senzor (7) de temperatură, o membrană (8) de etanşare din cauciuc siliconic, structura (s) fiind conectată prin intermediul unui cablu (9) cu o unitate (10) electronică de achiziţie prelucrare şi afişare date prevăzută cu trei display-uri: pentru afişarea valorii presiunii bioxidului de carbon, a temperaturii masei fermentative şi a timpului. Pentru realizarea unor studii complexe în diverse condiţii de lucru, aparatul este prevăzut şi cu o structură opţională alcătuită dintr-o unitate (11) multiplexoare la care se pot conecta în paralel mai multe structuri (B, C, D, E, F,...) de bază identice cu structura (A) de bază, un calculator (12) electronic echipat cu un program de calcul specializat şi o imprimantă (13) electronică, figura 1.

PATENT RO126502 / 2011

Apparatus for determining yeast activity

The invention relates to an apparatus for determining the yeast activity. According to the invention, the apparatus comprises a base structure (A) consisting of a fermentation vessel (1) provided with a thread wherein there is introduced the fermenting mass (m) consisting of water, glucose and yeast, the fermentation vessel (1) having a Peltier type electrical thermostating system (2), at the top of the vessel (1) there being provided a measuring structure (s) comprising, in its turn, a resilient stainless steel membrane (4) upon which there acts the carbon dioxide released by the yeast fermentation process, two electroresistive sensors (5 and 6) for measuring the deformation (4) of the membrane, a temperature sensor (7), a sealing membrane (8) made of silicone rubber, the structure (s) being connected by means of a cable (9) with an electronic unit (10) for acquiring; processing and displaying data provided with three displays: for displaying the carbon dioxide pressure value, the fermenting mass temperature and time. In order to carry out complex tests in various working conditions, the apparatus is also provided with an optional structure comprising a multiplexing unit (11) where to there may be connected in parallel a plurality of base structures (B, C, D, E, F,...) identical to the base structure (A), an electronic computer (12) equipped with a specialized computing program and an electronic printer (13), figure 1.
83. BREVET RO126495 / 2011
Celulă galvanică de curgere
Autori: Gutt Sonia; Gutt Gheorghe; Poroch – Seriţan Maria
Clasificarea internaţională: G01J3/28; G01N21/01
Prioritate: RO20090000851 20091023
Rezumat
Invenţia se referă la o celulă galvanică de curgere, destinată analizei chimice calitative şi cantitative, pe cale spectrofotometrică, a electrólitu lui unei băi de depunere galvanică, în scopul stabilirii condiţiilor optime de lucru. Celula galvanică, conform invenţiei, este alcătuită dintr-un corp (1) paralelipipedic din material plastic transparent, străbătut de un canal (c) cilindric de curgere, prevăzut cu două fibre optice (2 şi 3), poziţionate şi montate perpendicular pe axa canalului (c), în interiorul corpului (1) fiind montaţi doi electrozi, un anod (4) şi un catod (5), metalici, având formă de disc, puşi în legătură cu două şuruburi (6 şi 7) metalice cu rol de presare, etanşare şi punere sub tensiune a electrozilor, corpul (1) fiind prevăzut cu două ștuțuri (8 şi 9) de alimentare cu electrolit şi respectiv, de refuare, un ventil (11) de reglare a debitului de electrolit şi un alt ventil (12) pentru injecţie în flux, o pompă (13) peristaltică, determinarea compoziţiei şi concentraţiei electrolitu lui fiind realizată cu ajutorul unui sistem spectrofotometric, alcătuit din cele două fibre optice (2 şi 3), o sursă (14) de radiaţie şi un spectrometru (15) echipat cu un detector şir fotodiode, pentru alimentarea ansamblului astfel format, fiind folosită o sursă (16) electrică de curent continuu, iar pentru achiziţia şi prelucrarea datelor, fiind prevăzut un calculator (17), figura 1.

PATENT RO126495 / 2011
Galvanic flow cell
Abstract
The invention relates to a galvanic flow cell meant to carry out a quantitative and qualitative chemical analysis by spectrophotometry of the electrolyte of a galvanic deposition bath in order to establish the optimal working conditions. According to the invention, the galvanic cell comprises a parallelepipedic body (1) made of transparent plastic material crossed by a cylindrical flow channel (c) provided with two optical fibers (2 and 3) positioned and mounted perpendicularly to the axis of the channel (c), within the body (1) there being mounted two metal electrodes, an anode (4) and a cathode (5) having the shape of a disk, connected with two metal screws (6 and 7) pressing, sealing and putting under voltage the electrodes, the body (1) being provided with two connections (8 and 9) for feeding the electrolyte and discharging it under pressure, respectively, a valve (11) for regulating the electrolyte flowrate and another valve (12), for flux injection, a peristaltic pump (13), the composition and the concentration of the electrolyte being determined by means of a spectrophotometric system comprising two optical fibers (2 and 3), a radiation source (14) and a spectrometer (15) equipped with a photodiode array detector, in order to supply the thus formed assembly there being used a DC electric source (16) and for the data acquisition and processing there being provided a computer (17), figure 1.
Aparat pentru determinarea nivelului de dospire la aluat

Autori: Gutt Gheorghe; Gutt Sonia
Clasificarea internațională: G01N33/10
Prioritate: RO20090000850 20091023

Rezumat

Invenția se referă la un aparat pentru determinarea nivelului de dospire la aluat. Aparatul conform invenției este o structură mecano-electronică alcătuită dintr-un vas (1) inoxidabil cilindric cu fundul rotunjit în care se introduce aluatul (2) de cercetat, vasul (1) fiind prevăzut cu o piuliță (3) specială de presare și sprijin, și un piston (4), aluatul (2) fiind cercetat cu ajutorul unei sonde care conține o celulă (5) dinamometrică electronică, un termocuplu (6) pentru măsurarea temperaturii aluatului (2) și un cablu de legătură cu un bătău (8) în care este montată o unitate electronică (9) care dispune de un display (10 și 11) digital pentru afișarea forței de presare și a temperaturii aluatului (2) și care este prevăzută cu o interfață serială pentru conectarea la un calculator (12) electronic cuplat cu o imprimantă (13), figura 1.

Apparatus for determining the degree of dough fermentation

Abstract

The invention relates to an apparatus for determining the degree of dough fermentation. According to the invention, the apparatus is a mechanic-electronic structure comprising a cylindrical corrosion-proof vessel (1) with rounded bottom wherein there is introduced the dough (2) to be tested, the vessel (1) being provided with a special pressing and supporting nut (3) and a piston (4), the dough (2) being tested by means of a probe which contains an electronic dynamometric cell (5), a thermocouple (6) for measuring the temperature of the dough (2) and a cable (7) for connection to a frame (8) wherein there is mounted an electronic unit (9) which is provided with a digital display (10 and 11) for displaying the pressing force and the temperature of the dough (2) and which is provided with a serial interface for the connection to an electronic computer (12) coupled with the printer (13), figure 1.
Rezumat
Invenția se referă la un biosenzor de glucoză, folosit pentru determinare conținutului de glucoză din sânge. Biosenzorul conform învenției este format dintr-un corp (1) în interiorul căruia se găsește o unitate (2) electronică amperometrică pentru măsurarea curentului de electroliză, precum și pentru prelucrarea și afișarea datelor pe un display (3) electronic, în exterior corpul (1) fiind prevăzut cu un sistem de dozare format dintr-o piuliță (4) randalinată, un clichet divizor prevăzut cu bilă (5) și arc (6), un șurub (7) de presare, un știit (8) cilindric pentru împiedicarea deplasării pe verticală a piuliței (4), un cuțit (9) de perforare, un tub (10) capilar din plastic, o celulă (11) de amestecare și reacție prevăzută cu un canal (C) deschis și doi electrozi (12 și 13) lamelari, realizați din platină, tot în partea exterioară a corpului (1) mai este montat prin înfiletare un flacon (15) de plastic care conține glucozoxidază (g) lichidă și care este prevăzut cu un piston din plastic, figura 1.

Abstract
The invention relates to a glucose biosensor used for determining the blood glucose level. According to the invention, the biosensor comprises a body (1) inside which there is an amperometric electronic unit (2) for measuring the electrolysis current and also for processing and displaying data on an electronic display (3), outside the body (1) there being provided a dosing system formed of knurled nut (4), a dividing ratchet pawl provided with a ball (5) and a spring (6), a pressing screw (7), a cylindrical pin (8) for preventing the vertical displacement of the nut (4), a perforating knife (9), a plastic capillary tube (10), a mixing and reaction cell (11) provided with an open channel (c) and two platinum-leaf electrodes (12 and 13), a plastic flask (15) containing liquid glucose oxidase (g) is also screwed outside the body (1), said flask being provided with a plastic piston, figure 1.
Rezumat

Invenția se referă la un biosenзор portabil pentru determinarea variației de masă și/sau a grosimii de strat ale unor specii biologic active. Biosenzorul conform invenției constă dintr-o structură optoelectronică echipată cu sonde detașabile și schimbabile, alcătuită dintr-un corp (1), o sursă (4) de radiație monocromatică de tip diodă laser sau led, o fibră optică (5) de iradiere, o tijă (6) de legătură, un cap optic (7) divizor, cu o piuliță (8) de strângere, o sondă (9) schimbabilă ce conține douăprezece fibre optice (10) disposte radial în jurul unei fibre optice (11) centrale, pe capătul plan al sondei (9) fiind depus un strat (13) subțire de aur peste care este depus un alt strat (13) subțire de material biologic activ care urmează a interacționa cu speciile biologice urmărite, fibra optică (11) centrală fiind cuplată cu un detector (12) optoelectronic de tip Diode-Array legat printr-un amplificator (13) electronic la o unitate electronică digitală de achiziție, prelucrare și afișare date, figura 1.

Abstract

The invention relates to a portable biosensor for determining the mass variation and/or the layer thickness of some biologically active species. According to the invention, the biosensor consists of an optoelectronic structure equipped with detachable and changeable probes comprising a body (1), a monochromatic radiation source (4) of a laser diode or light-emitting diode type, irradiation fiber optics (5), a connecting rod (6), an optical dividing head (7), a binding nut (8), a changeable probe (9) containing twelve optical fibers (10) radially arranged around a central fiber optic (11), on the flat end of the probe (9) there is deposited a thin gold layer (12) above which there is deposited another thin layer (13) of biologically active material to interact with the assessed biological species, the central fiber optic (11) being coupled with an optoelectronic diode array detector (12); connected through an electronic amplifier (13) to a digital electronic unit for data acquisition, processing and displaying, figure 1.
Reovăscozimetru

Rezumat

Invenția se referă la un reovăscozimetru portabil, destinat determinării vâscozității mediilor lichide omogene, precum și a lichidelor cu suspensii, prin intermediul valorii curentului electric consumat de un servomotor ce antrenează un corp de frecare de o anumită geometrică, în contact cu mediul cercetat. Reovăscozimetrul conform invenției este compus dintr-o parte mecanică (m) de antrenare, alcătuită dintr-un corp (1) și un motor (2) de curent continuu, aflată în legătură cu un sistem (f) de frecare rotativ, alcătuit dintr-un con (3) dublu monobloc, scufundat într-un lichid (l) de cercetat până la un reper (r) trasat pe o tijă (4) cilindrică de antrenare și dintr-o parte electronică (e) alcătuită dintr-o sursă de curent continuu (5), o rezistență (6) de șunt, un amplificator (7) electronic, o unitate (8) centrală de achiziție, prelucrare și afișare date, un display (9) alfanumeric și un întrerupător (k) electric, figura 2.

Abstract

The invention relates to a portable rheoviscosimeter meant to determine the viscosity of homogenous liquid media and suspension liquids by the intermediary of the value of the electric current consumed by a power actuator which drives a friction body having a certain geometry into contact with the medium to be studied. According to the invention, the rheoviscosimeter comprises a mechanical driving part (m) consisting of a body (1) and a DC motor (2), said part being connected with a rotary friction system (f) consisting of a mono-block double cone (3) immersed into the liquid medium (l) to be studied up to a measuring mark (r) plotted on a driving cylindrical rod (4), and an electronic part (e) consisting of a DC source (5), a shunt element (6), an electronic amplifier (7), a central unit (8) for data acquisition, processing and displaying, an alphanumerical display (9) and an electric switch (k), figure 2.
Rezumat

Invenția se referă la un cromatograf portabil, destinat separării în situ a unui amestec lichid pe componente, urmată de determinarea naturii și concentrăției acestor componente pe cale spectrofotometrică. Cromatograful portabil, conform invenției, este alcătuit dintr-o seringă de presiune în a cărei compunere intră un mâner (1) de apăsare, o tijă (2), un arc (3), un piston (4), un cilindru (5) gradat realizat din sticlă, o cămașă (6) din metal inoxidabil, o piuliță (7) specială cu mâner și o altă piuliță (8) specială pentru prestatibirea debitului maxim de lichid absorbit, dintr-un corp (9) metalic echipat cu două supape (10 și 11) cu sens unic de tip arc-bilă și cu un șurub (12) de închidere și prevăzut cu niște canale care fac legătura între seringă, un ac (13) lung de seringă și o coloană (14) cromatografică cu umplutură (15) aflată în legătură cu o celulă (19) de curgere prevăzută cu o fotobarieră realizată cu două fibre optice (20 și 21), precum și dintr-o sură (22) de radiație luminoasă, dintr-un spectrometru (23) miniatural prevăzut cu un detector de tip Diode-Array, dintr-un calculator (24) care rulează un program de calcul specific pentru achiziția și prelucrarea datelor experimentale și dintr-o imprimantă (25), figura 1.

Abstract

The invention relates to a portable chromatograph meant to separate in situ a liquid mixture into its components, followed by spectrophotometrically determining the nature and concentration of said components in spectrophotometric way. According to the invention, the portable chromatograph comprises a pressure syringe consisting of a pressing handle (1), a rod (2), a spring (3), a piston (4), a graduated cylinder (5) made of glass, a jacket (6) of stainless metal, a special nut with handle (7) and another special nut (8) for pre-establishing the maximal flow rate of the absorbed liquid, a metal body (9) equipped with two one-way valves (10 and 11) of a spring-ball type and with a closing screw (12) and provided with some grooves which make the connection between the syringe, a long syringe needle (13) and a filler-packed chromatographic column (14) in connection with a flow cell (19); provided with a photobarrier manufactured with two optical fibers (20 and 21) and also a luminous radiation source (22), a miniature spectrometer (23) provided with a diode array detector, a computer (24) running a specific computing program for the acquisition and processing of the experimental data and a printer (25), figure 1.
Rezumat

Prezentă învenție se referă la un biosenzor enzimatic, cu enzime de tip oxidază, destinat determinării rapide in situ a concentrației unor specii chimice sau biologice, alcătuit dintr-o structură de dozare-măsurare cuprinzând un corp (1) în care se găsește o unitate electronică (2) de achiziții, prelucrare și afișare date, o unitate electronică amperometrică (3), pentru măsurarea curentului de electroliză, o unitate electronică conductometrică (4), pentru măsurarea conductivității electrolitului, o tastatură (5) pentru programarea aplicațiilor cu enzime diferite, un sistem de dozare compus, la rândul lui, dintr-o capsulă (6) din plastic, conținând soluția de oxidază, un furtun siliconic (10), prin care se dozează cantitatea de oxidază, la rotirea manuală a unui cilindru (11) sprijinit excentric, o tijă (12) prevăzută, la partea inferioară, cu doi electrozi semicirculare (14 și 15) din platină, pentru măsurători amperometrici și conductometrici, o cupă detășabilă (17), reprezentând camera de reacție în care se introduce soluția de analizat, printr-o pipetă de dozare (21) sau printr-un dozator electronic, figura 1.

Abstract

The invention relates to an enzyme biosensor with oxidase-type enzymes, meant for quick in-situ determination of the concentration of certain chemical or biological species, consisting of a dosing-measuring structure which comprises a body (1) wherein there is an electronic unit (2) for data acquisition, processing and display, an electronic ammeter unit (3) for measuring the electrolysis current, an electronic conductometer unit (4) for measuring the electrolyte conductivity, a keyboard (5) for programming applications with various enzymes, a dosing system comprising, in its turn, a plastic capsule (6) which contains the oxidase solution, a silicone hose (10) where through the oxidase amount is dosed upon manual rotation of an eccentrically supported cylinder (11), a rod (12) provided at its lower part with two semicircular platinum electrodes (14 and 15); for ammeter and conductometer measurements, a detachable cup (17) representing the reaction chamber wherein the solution to be analyzed is introduced through a dosing pipette (21) or through an electronic dosing device, figure 1.
Rezumat

Învenția se referă la un fotometru destinat pentru determinarea concentrației diferitelor specii ionice prezente în apă, care folosește chituri chimice pentru reacții de culoare. Fotometrul conform învenției este constituit dintr-un corp (1) pe care este montată o seringă de dozare, compusă dintr-un cilindru (2) gradat, din sticlă, un piston (5) care poate fi acționat în două trepte, pentru absorbția și refularea unor volume de lichid diferite, o tijă (6), un mânere (7), o piuliță (8) pentru reglarea volumului de apă absorbbit, o piuliță (9) de blocare, un arc (10) de compresie, o piuliță (11) cu un pas mare, ce permite absorbția unui volum mai mare de lichid apos decât volumul prestabilit, precum și un distribuitor (12) cu două căi, un dispozitiv fotometric, compus dintr-un corp (13), un ac (14) de seringă o fotobarieră (15), un chit (l) lichid, plasat într-un tub (16) din plastic, și un chit (s) solid, ambalat etanș, prin termosudare într-un dop (17), un dispozitiv (18) pentru perforarea dopului (17), prevăzut cu un cuțit cilindric înclinat, cu un canal de scurgere și cu niște găuri de colectare, un șurub (19) cav de presare a tubului (16) din plastic și o garnitură (20) de etanșare, pe un corp (1) fiind dispus un display (21) alfanumeric, pentru afișarea unor date, și niște taste (22) pentru programarea unui microprocesor, figura 1.

Abstract

The invention relates to a photometer intended for determining the concentration of various ionic species present in water while using chemical fillers for colour reactions. According to the invention, the photometer consists of a body (1) whereon there is mounted a dosing syringe comprising a glass gauge cylinder (2), a piston (5) which can be actuated in two steps, for the absorption or delivery of different volumes of liquid, a rod (6), a handle (7), a nut (8) for adjusting the absorbed water volume, a locking nut (9), a compression spring (10), a high pitch nut (11) allowing a higher volume of aqueous liquid than the preset volume to be absorbed, as well as a two-way distributor (12), a photometric device consisting of a body (13), a syringe needle (14), a photobARRIER (15), a liquid filler (I) placed within a plastic tube (16), and a solid filler (s), tightly heat-sealed within a plug (17), a device (18) for perforating the plug (17), provided with an inclined cylindrical knife with a drain spout and some collecting holes, a hollow screw (19) pressing the plastic tube (16) and a sealing gasket (20) made of silicone rubber, on the body (1) there being placed an alphanumeric data display device (21) and some keys (22) for programming a micro processor, figure 1.
Abstract

The invention relates to a miniature biosensor meant for specific quantitative assays of a biological or chemical species from a liquid medium or a living tissue, which consists of an assembly comprising a radiation source (S) including two laser diodes (1 and 2), an optical chopper (3) which alternately switches the two monochromatic radiation beams (f1 and f2) of different frequencies to an optical coupler (4) where to there is connected a splitting optical fibre (5) provided at one end with a thin gold coating (6) which is about 30...50 nm-thick and 10 mm-long, over which there is made a thin biologically-active deposit (7) which specifically binds the analyzed species, while at the other end there is an electronic part (8) intended to measure the phase shift between the values of the wavelengths of incident and reflected radiations and calculate the ratio between the two values, in order to automatically eliminate the error given by temperature variation, figure 1.
Sistem de dozare

Rezumat

Invenția se referă la un sistem de dozare utilizat pentru dozarea amestecării și reacției a două specii chimice. Sistemul conform invenției este alcătuit dintr-un corp (1) prevăzut cu un distribuitor (2) manual, cu trei căi, o seringă (3) de dozare și o altă seringă (5) de dozare - amestecare-reactie, formată, la rândul ei, dintr-un cilindru (7) gradat interschimbabil, din sticlă, o piuliță (8) de presare, o garnitură (9) de etanșare, un piston (10), o tijă (11), un mâner (12), două piulițe (13 și 14) și un arc de compresie (15), figura 1.

Dosyng system

Abstract

The invention relates to a dosing system intended to dose mixing and reacting of two chemical species. According to the invention, the system consists of a body (1) provided with a manual three-ways distributor (2), a dosing syringe (3) and another syringe (5) for dosing-mixing-reacting which, in its turn, comprises an interchangeable gauge cylinder (7) made of glass, a clamping nut (8), a sealing gasket (9), a piston (10), a rod (11), a handle (12), two nuts (13 and 14) and a compression spring (15), figure 1.
Aparat pentru determinarea caracteristicilor depozitelor și proceselor galvanice

Resumat

Aparat pentru determinarea caracteristicilor și proceselor galvanice, caracterizat prin aceea că, în vederea determinării luminii, a structurii microscopice, a grosimii de strat la depozite galvanice, a compoziției chimice calitative și cantitative a electrolitului galvanic, a productivității procesului galvanic, a randamentului de curent, a bilanțului de materiale și energie, în orice moment al depunerii, fără a opri procesul galvanic și fără a scoate electrozii din baie, este folosită o structură optoelectronică modulară, portabilă și unitară, formată dintr-o sondă (S), un pachet de fibre optice (P) și o parte electronică (E), sonda (S) este compusă, la rândul ei, dintr-un corp superior (1), ce conține un buton (3) de apăsare, un senzor (4) inductiv, diferențial, de deplasare, o tijă (5) cilindrică de acționare, un arc (6) de readucere, și un element (7) pentru sprijinirea sondei (S) pe depunerea galvanică (8), realizată pe materialul catodic (9) suport, și un corp inferior (2), ce conține o tijă (10) cilindrică, de ghidare, pentru un sistem de fibre optice prevăzute, la capăt cu o lentilă (11) optică, un arc (12) de compresie, un corp (13) alunecător cilindric, un corp (14) încinat, o oglindă (15) de argint și un șurub (16) de reglare a oglindii, pachetul (P) de fibre optice este format din opt fibre optice (17) de iluminare, o fibră optică (18) centrală, pentru transmisia radiației reflectate, un divizor (19) de fibră optică și trei fibre optice divizate (20, 21 și 22), partea electronică (E) este compusă dintr-o sursă (23) de radiație policromatică, un filtru (24) optic, un spectrometru (25) miniatural de absorbție, o unitate (26) de analiză microscopică, un detector CCD și o unitate (27) electronică centrală, figura 1 și figura 2.

PATENT RO125049 / 2011

Apparatus for determining the characteristics of galvanic deposits and processes

Abstract

The invention relates to an apparatus determining the characteristics of galvanic deposits and processes, namely: brightness, microscopic structure and layer thickness of a galvanic deposit, chemical composition of an electrolyte in a galvanic bath, as well as the output of a galvanic process, the energy balance and material balance in any moment of deposition, without stopping the process and removing the electrodes from the bath. According to the invention, the apparatus has a modular structure consisting of a portable probe (S), a bundle of optical fibres (P) and an electronic section (E), the probe (S) consisting of an upper body (1) which contains a press button (3), a differential inductive displacement sensor (4), a cylindrical actuation rod (5), a spring (6) and an element (7) resting on a galvanic deposit (8) made on a cathode material (9), and a lower body (2) which contains a cylindrical rod (10) for guiding a bundle of optical fibres (P), a compression spring (12), an optical lens (11), a silver mirror (15) and a screw (16) for adjusting the same, the bundle of optical fibres (P) consisting of eight optical fibres (17) for illumination, a central optical fiber (18) split, by means of a fiber optic splitter (19), into three optical fibres (20, 21 and 22), and the electronic section (E); consisting of a polychromatic radiation source (23) provided with an optical filter (24), a miniaturized absorption spectrometer (25), a microscopic analysis unit (26) and a central electronic unit (27), figure 1, figure 2.
Sondă pentru determinarea luciului depunerilor galvanice

Autori: Gutt Gheorghe; Gutt Sonia
Clasificarea internațională: G01N21/17
Prioritate: RO2008000911 20081120

Rezumat

Sondă pentru determinarea luciului depunerilor galvanice, caracterizată prin aceea că, în vederea determinării luciului acestora în timpul procesului de electrodepunere, este formată dintr-o tijă (1) cilindrică ce conține un canal de iluminare format, la rândul lui, dintr-o sursă de radiație monocromatică de tip diodă laser, un grupaj circular de douăsprezece fibre (2) optice de iluminare, o lentilă (3) de focalizare; precum și un canal de măsurare a reflexiei radiației incidente, compus dintr-o fibră (4) optică centrală, pentru conducerea radiației reflectate spre o parte electronică, un arc (5) de compresie și doi cilindri (6 și 7) care asigură deplasarea tijei optice spre o depunere (12) galvanică, realizată pe un catod (13), luciul depozitului galvanic determinându-se automat, pe baza valorii zero a derivatei a doua a fotocurentului maxim, în funcție de timp, atunci când sonda este apăsată manual spre depunerea (12) galvanică, și lăsată ulterior să revină elastic, prin destinderea arcului (5) de compresie, figura 1.

PATENT RO125048 / 2011

Probe for determining the brightness of galvanic deposits

Abstract

The invention relates to a probe for determining the brightness of galvanic deposits during the electrodeposition process. According to the invention, the probe consists of a cylindrical rod (1) containing an optical illumination path consisting of a monochromatic radiation source, twelve optical fibres (2) for the illumination of a deposit and a focusing lens (3), and an optoelectronic path for measuring the radiation reflection on the deposit, comprising a central optical fiber (4) placed in the center of the twelve optical fibres (2), leading the reradiation to a photoelectric detector, and an electronic amplification, data processing and display section, where the cylindrical rod (1) can be actuated by means of a compression spring (5) and two sliding cylinders (6 and 7) as to the approach to the deposit made on a cathode (13) of a galvanic cell, figure 1.
Celulă de măsurare

Rezumat

Celulă de măsurare, folosită pentru măsurarea concomitentă, on-line și în situ, a compoziției, concentrației și conductivității electrolitice a unei soluții în curgere, caracterizată prin aceea că este formată dintr-un corp (1) din material plastic, două fibre (4 și 5) optice, scurte, ale căror capete inferioare sunt la nivelul peretelui unui canal (c) cilindric de curgere a soluției, și ale căror capete superioare sunt conectate la alte două fibre (6 și 7) optice, lungi, ce fac legătura cu o sursă (8) de radiație policromatică, cu acoperire spectrală UV-VIS-NIR, respectiv, cu un minispectrometru (10) cu detector Diode-Array, tot în corpul (1) celulei și tot la nivelul peretelui canalului (c) cilindric de curgere se găsesc integrați doi electrozi (11 și 12) de tip folie, din platină, legați la un conductometru (13) electronic, achiziția și prelucrarea datelor fiind asigurate de un sistem (14) de calcul și de un program specializat, figura 2.

Abstract

The invention relates to a cell for measuring the composition, concentration and conductivity of a flowing liquid solution. The measuring cell comprises a plastic body (1) provided with a cylindrical channel (c) where through a solution flows and two connections (2 and 3) for the intake and outlet of the solution, respectively, two foil electrodes (11 and 12) made of platinum, mounted at the level of the wall of the cylindrical channel (c) and connected to an electronic conductometer (13), as well as two short optical fibres (4 and 5) whose lower ends are also mounted at the level of the wall of the cylindrical channel (c) while the upper ends are connected to other two long optical fibres (6 and 7) in connection with a source (8) of polychromatic radiation, provided with a system (9) of optical filters and a mini spectrometer (10) with Diode-Array detector, a computer system (14); ensuring data acquisition and processing, figure 2.
Sondă pentru determinarea luciului și a grosimii de strat la depuneri galvanice

Autori: Gutt Gheorghe; Gutt Sonia
Clasificarea internațională: G01N21/17; G01N21/55; G01B7/06
Prioritate: RO20080000906 20081120

Rezumat

Sondă pentru determinarea luciului și grosimii depunerilor galvanice, caracterizată prin aceea că se compune dintr-o tijă (1) cilindrică, mobilă, ce conține un sistem optic, format din douăsprezece fibre (2) optice de iluminare, o fibră (3) optică pentru măsurarea reflexiei și o lentilă (4) convergentă de focalizare, luciul fiind determinat automat, la traversarea punctului focal al lentiei (4) de către sistemul optic, ca raport între valoarea fotocurentului dat de reflexia de pe depunere, și cea a fotocurentului dat de reflexia de pe o oglindă de argint (17), iar grosimea de strat fiind determinată tot atunci, din diferența dintre valoarea drumului parcurs de o tijă (1) la determinarea luciului depunerii (14) galvanice la acel moment, folosindu-se, în acest scop, un senzor inductiv diferențial, format dintr-un miez (8) magnetic, două bobine (9 și 10) electrice și o unitate de calcul electronică, figura 1.

Abstract

The invention relates to a probe for determining brightness and layer thickness in galvanic deposits. According to the invention, the probe comprises a mobile cylindrical rod (1) which can be manually actuated, by pushing, by means of another rod (5) and a compression spring (6), at the bottom part thereof there being placed an optical system consisting of twelve optical illumination fibres (2) circularly arranged around another optical fibre (3) to lead the reradiation to a photo-electric detector, as well as a converging lens (4) for radiation focusing, while, at the top part, it has an electromagnetic differential displacement sensor consisting of a magnetic core (8) moving between two electric coils (9 and 10), the entire assembly being mounted in a cylindrical body (11), figure 1.
Rezumat

1. Sondă pentru determinarea concentraţiei unui component dintr-o soluţie, caracterizată prin aceea că, în vederea determinării rapide a concentraţiei pe cale fotometrică, este folosită o sondă optoelectronică, acţionată manual, compusă dintr-un corp (1), o sursă (2) de radiaţie monocromatică, de tip LED acordat pe lungimea de undă specifică de aborbeţie a speciei chimice urmărită, o fotodiodă (3) receptoare, două fibre (5 şi 6) optice, pentru transmiterea, respectiv, recepţia radiaţiei luminoase, o oglindă (14) pentru reflectarea radiaţiei luminoase, un controler (11) electronic pentru procesarea datelor, un arc (12) de compresie şi o tijă (13) cilindrică.

2. Sondă pentru determinarea concentraţiei unui component dintr-o soluţie, conform revendicării 1 şi fig.2, caracterizată prin aceea că, în vederea folosirii corpului sondei şi a electronicii aferente la măsurări fotometrice pentru diferite specii chimice, este folosit un pachet optic compact, interschimbabil, specific unei anumite specii chimice, format dintr-un dispozitiv (d) optoelectronic, prevăzut la partea superioară, cu nişte contacto (4) electrice, glisante, în care se găsesc montate rigid un LED (2) emițător, ce emite radiaţie luminoasă pe un domeniu de frecvenţă specific absorbţiei moleculare maxime a speciei analizate şi o fotodiodă (3) receptoare.

Sondă pentru determinarea concentraţiei unui component dintr-o soluţie, conform revendicării 1, caracterizată prin aceea că, în vederea determinării automate a domeniului liniar de lucru, ce asigură valabilitatea legii Lambert-Beer sub aspectul concentraţiei şi grosimii maxime admisă, este folosit un sistem de deplasare a oglizinii (14) de reflexie, format dintr-un buton (15), un arc (12) de compresie, o tijă (13) cilindrică, un senzor (8) inductiv de deplasare, un program de calcul încărcat într-un controler (11) electronic, ce permite efectuarea automată a derivatei a doua a absorbantei (A), în funcţie de grosimea (b) de strat, pe tot parcursul deplasării oglizinii (14), stabilirea punctului de inflexiune A_{max} de începere a neliniarităţii, calcularea valorii $A_{\text{max}}/2$ şi extrapolarea automată a acestei valori, în vederea determinării valorii mediei aritmetice a grosimii de strat b_{m}.

PATENT RO125046 / 2010

Probe for determining the concentration of a component in a solution

Abstract

The invention relates to a photometric probe meant to automatically determine the concentration of a certain chemical species in a monocomponent or multicomponent solution. According to the invention, the probe comprises a body (1), a LED-type source (2) of monochromatic radiation having the wavelength specific to the absorption of the chemical species to be assayed, a mirror (14) reflecting the luminous radiation, a receiving photo diode (3), two optical fibers (5 and 6) for transmitting and receiving the luminous radiation, respectively, a compression spring (12) and a cylindrical rod (13) for the travel of the mirror (14), as well as an inductive sensor (8) for measuring such travel and an electronic controller (11) for data processing, figure 1, figure 2 and figure 3.
Sistem pentru determinarea compoziţiei, concentraţiei şi dozarea unei soluţii

Autori: Gutt Sonia; Gutt Gheorghe; Gutt Andrei
Clasificarea internaţională: G01J3/00; G01N21/01; G01N21/27
Prioritate: RO20080000909 20081120

Rezumat
Sistem pentru determinarea compoziției, concentrației și dozarea unei soluții, caracterizat prin aceea că, în vederea determinării rapide și precise a compoziției chimice calitative și cantitative a unei soluții lichide, inclusiv, a unei soluții tulburi sau a unei soluții necolorate, atât în condiții de laborator, cât și în situ, precum și în vederea dozării, după caz, a unui anumit volum din această soluție, este folosită o structură modulară, formată dintr-o sursă (1) de radiație policromatică, un set (2) de filtre optice interschimbabile, două fibre (3 și 4) optice lungi, o celulă de curgere și spectrofotometrare, formată, la rândul ei, dintr-un corp (5) cu un canal cilindric de curgere (c), două fibre (8 și 9) optice scurte, două racorduri (r1 și r2) pentru fixarea unui ac (6) de seringă, respectiv, a unei seringi (7) de aspirație/refulare sau, după caz, a unui dispenser electronic dozator, în compunerea sistemului spectrometric mai intră un spectrometru (10) miniatural, echopat cu detector Diode-Array, un sistem (11) de calcul interfațat wireless cu spectrometrul (10) miniatural, un filtru (12) capsulat de unică folosință, folosit pentru soluții tulburi, niște segmente (13, 14, 15) de adaptare și un kit (16) chimic de unică utilizare, pentru realizarea de reacții chimice de culoare la soluții ce nu au absorbție spectrală în domeniul vizibil, figura 1.

PATENT RO125045 / 2010
System for determining composition, concentration and dosage of a solution

Abstract
The invention relates to a portable electronic spectrometric system for determining the chemical composition and the concentration of a liquid solution and for an accurate volumetric dosage thereof. According to the invention, the system comprises a flowing and spectrophotometry cell consisting of a body (5) having a cylindrical flow channel (c) provided at its ends with two connections (r1 and r2) for fastening a syringe needle and an intake/discharge syringe (7), respectively, or an electronic dosage dispenser, as the case may be, which is connected, by some short optical fibers (9 and 8) and some long optical fibers (3 and 4), to a source of polychromatic radiation (1) provided with a set of interchangeable optical filters (2), and to a spectrometer (10) provided with a Diode-Array detector which communicates with a computer system (11) to analyze an unsettled solution, the flowing and spectrophotometry cell being provided with a disposable encapsulated filter (12), figure 1.
Anul 2009

99. BREVET RO122694/ 2009
Celulă spectrofotometrică

Autori: Gutt Sonia; Gutt Gheorghe
Clasificarea internațională: G01J3/42; G01N21/00
Prioritate: RO2007000906 20071228

Rezumat

Invenția se referă la o celulă spectrofotometrică care permite transformarea unui spectrometru de laborator, cu măsurarea discontinuă a compoziției și concentrației unui amestec de soluții lichide, într-un spectrometru cu măsurare continuă la distanță, în situ și în timp real, a acestora. Celula spectrofotometrică, conform invenției, este compusă din două prisme (1 și 2) din sticlă de cuarț și de quartz, lipite împreună, prevăzute, la partea inferioară, cu două oglinzi (3 și 4) cu reflectie totală, așezate în unghi de 45° față de direcția radiației, iar la partea superioară are două fibre (7 și 8) optice, care fac legătura cu o sondă (9) de măsurare specială, prevăzută cu o oglindă (10) cu reflexie totală și o fereastră (f) deschisă, înundațiă, plasată în rezervorul sau reactorul (11) care conține speciile chimice de analizat, prin fibra (7) optică circulând radiația emisă de o sursă (12), printr-un grup de lentile (13) colimatoare, o diafragmă (14) reglabă și o fereastră (15), iar prin cealaltă fibră (8) optică circulând radiația optică reflectată, care conține informații spectrale, calitative și cantitative, despre speciile chimice din soluția analizată, informații care sunt procesate prin intermediul unei rețele (16) de difracție a unui detector CCD (17) de tip Diode Array, al unui amplificator (18) electronic și al unui sistem (19) de achiziție, prelucrare și afișare a datelor, figura 2.

PATENT RO122694 / 2009
Spectrophotometric cell

Abstract

The invention relates to a spectrophotometric cell which allows the conversion of a laboratory spectrophotometer, with discontinuous measurement of the concentration and composition of a liquid solution mixture, into a spectrometer with remote continuous measurement thereof, in situ, and in real time. According to the invention, the spectrophotometric cell consists of two identical prisms (1 and 2) made of glass and quartz, attached to each other, provided, at the lower part, with two mirrors (3 and 4) with total reflection, placed in an angle of 45° in relation to the direction of the radiation, and, at the upper part, it has two optical fibers (7 and 8), which make the connection with a special measuring probe (9) provided with a mirror (10) with total reflection and an open submerged window (f) placed in the tank or the reactor (11) comprising the chemical species to be analyzed, through the optical fiber (7) there circulating the radiation emitted by a source (12), through a cluster of collimating lenses (13), an adjustable diaphragm (14) and a window (15), and through the other optical fiber (8) there circulating the reflected optical radiation, which comprises qualitative and quantitative spectral information on the chemical species from the analyzed solution, information which is processed by means of a diffraction network (16) of a Diode Array-type CCD detector (17), of an electronic amplifier (18) and of a data acquisition, processing and display system (19), figure 2.

Fig. 2.
Aparat pentru determinarea densității, concentrației și viscozității soluțiilor în regim industrial

Autori: Gutt Gheorghe; Gutt Sonia

Clasificarea internațională: G01N11/10; G01N9/04; G01N9/10; G01N9/20

Prioritate: RO20070000905 20071228

Rezumat

Invenția se referă la un aparat pentru determinarea automată a densității, concentrației și viscozității soluțiilor în regim industrial, în vederea determinării acestor mărimi cu un singur aparat și în ciclu complet automat, a corelării lor cu temperatura și cu timpul, precum și a corelării densității cu concentrația la soluții bicomponent. Aparatul conform invenției lucrează în ciclu automat și se compune dintr-un sistem (1) de fixare pe un perete (2) al unui rezervor sau reactor care conține soluția (s) de analizat, un sistem (3 și 4) de coborâre controlată, în soluție, până la un reper (r), un ansamblu constructiv coaxial, format dintr-o celulă (5) electronică dinamometrică de precizie, un element (6) de legătură care adăpostește un cilindru (7) pneumatic, al cărui piston (8), apăsat de un arc (9), obturează, prin intermediul unei tije (10), un orificiu capilar (c), realizat într-o piuliță (11) interschimbabilă, înfiletată, la rândul ei, în partea inferioară a unui cilindru (12) metalic cav, ce poate fi inundat controlat, de către soluția de analizat; de asemenea, mai există un termocuplu (13) pentru măsurarea temperaturii soluției, o unitate (14) centrală de achiziție, prelucrare și afișare a datelor, precum și patru electroventile comandate de unitatea electronică centrală, care asigură comanda elementelor de execuție pneumatică, figura 1.

Apparatus for determining density, concentration and viscosity of solutions under industrial conditions

Abstract

The invention relates to an apparatus for automatically determining the density, concentration and viscosity of solutions under industrial conditions, meant to determine said values by using a single apparatus and in a full automated cycle, while correlating the same with time and temperature, as well as correlating density with concentration in bicomponent solutions. According to the invention, the apparatus works in automatic cycles and comprises a system (1) for fixing the same on a wall (2) of a tank or reactor containing the solution (s) to be assessed, a system (3 and 4) for the controlled dropping into the solution, down to a mark (r), a coaxial constructive assembly consisting of an electronic precision dynamometric cell (5), a connection element (6) accommodating a pneumatic cylinder (7) whose piston (8) pressed by a spring (9) obstructs, by means of a rod (10), a capillary orifice (c) cut into an interchangeable nut (11) which is, in its turn, screwed into the lower part of a hollow metal cylinder (12) that can be flooded in a controlled manner by the solution to be assessed; there is also a thermocouple (13) to measure the solution temperature, a central data acquisition, processing and display unit (14), as well as four electro-valves controlled by the central electronic unit, ensuring the control of the pneumatic operation elements, figure 1.
Rezumat

Prezentă învenție se referă la un procedeu și la un aparat pentru determinarea densității, concentrației și viscozității unei soluții. Procedeul conform învenției constă în cântăriri hidrostatiche, realizate cu o balanță de precizie, ale soluției cercetate, măsurări de timp, realizate cu un cronometru electronic, și măsurări de temperatură, realizate cu un termometru electronic, prin care se determină densitatea și viscozitatea soluției, prin raportul dintre timpul necesar trecerii unei anumite mase din soluția cercetată printr-un orificiu capilar, realizat în partea inferioară a unui corp cav, corelarea densității și viscozității cu temperatura și cu timpul realizându-se automat, printr-un program de calculator, iar corelarea densității soluțiilor bicomponente cu concentrația prin extrapolare, în tabele EEPROM, care conțin perechi valori de densitate, concentrații determinate la temperaturi bine cunoscute. Aparatul conform învenției este format dintr-un bătu (1) pe care este fixată o balanță (2) electronică, având un platan (3) încălzit, pe care se găsește un vas (4) din sticlă, pe care se găsește un orificiu (c) capilar, realizat în partea inferioară a unui corp cav, corelarea densității și viscozității cu temperatura și cu timpul realizându-se automat, printr-un program de calculator, iar corelarea densității soluțiilor bicomponente cu concentrația prin extrapolare, în tabele EEPROM, care conțin perechi valori de densitate, concentrații determinate la temperaturi bine cunoscute. Aparatul conform învenției este format dintr-un bătu (1) pe care este fixată o balanță (2) electronică, având un platan (3) încălzit, pe care se găsește un vas (4) din sticlă, pe care se găsește un orificiu (c) capilar, realizat în partea inferioară a unui corp cav, corelarea densității și viscozității cu temperatura și cu timpul realizându-se automat, printr-un program de calculator, iar corelarea densității soluțiilor bicomponente cu concentrația prin extrapolare, în tabele EEPROM, care conțin perechi valori de densitate, concentrații determinate la temperaturi bine cunoscute. Aparatul conform învenției este format dintr-un bătu (1) pe care este fixată o balanță (2) electronică, având un platan (3) încălzit, pe care se găsește un vas (4) din sticlă, pe care se găsește un orificiu (c) capilar, realizat în partea inferioară a unui corp cav, corelarea densității și viscozității cu temperatura și cu timpul realizându-se automat, printr-un program de calculator, iar corelarea densității soluțiilor bicomponente cu concentrația prin extrapolare, în tabele EEPROM, care conțin perechi valori de densitate, concentrații determinate la temperaturi bine cunoscute.

PATENT RO122608 / 2009

Process and apparatus for determining the density, concentration and viscosity of solutions

Abstract

The invention relates to a process and an apparatus for determining the density, concentration and viscosity of a solution. According to the invention, the process consists of operations of hydrostatic weighing of the solution to be assessed, performed with a precision balance, time measuring operations made with an electronic time piece and temperature measuring operations made with an electronic thermometer, to determine the density and viscosity of the solution, by the ratio between the time required for an amount of the solution to be assessed to pass through a capillary orifice made in the lower part of a hollow body and the total mass variation, the density and viscosity of the solution being automatically correlated with time and temperature by using a computer program, while the correlation of bicomponent solutions density and concentration being made by extrapolation in EEPROM tables which contain pairs of densities and concentrations values determined in well known temperature conditions. According to the invention, the apparatus comprises a framework (1) on which an electronic balance (2) is mounted, having a heated pan (3) on which there is placed a glass vessel (4) containing the solution to be assessed (s), in the upper part the construction assembly being provided with a cross arm (5) which can move vertically by means of a column (6) driven by a hand wheel (7), on which a tight hollow body (9) is vertically fixed by means of a supporting rod (8), said hollow body (9) having at its lower part an interchangeable nut (10) provided with a capillary orifice (c) which can be closed or opened by means of a sealing body (11) continued by a rod (12) actuated, upon the opening of the capillary orifice (c) by an electromagnet (13) and upon closing thereof by a stop spring (14), a thermel (15) being also mounted on the cross arm (5) to continuously measure the solution temperature, in addition, the construction comprising an electronic unit for data acquisition, figure 1.
Rezumat

Învenţia se referă la un durimetru electronic, portabil, cu senzor piezoelectric, destinat determinării durităţii dinamice, prin cădere liberă a unui pendul care are la extremitate un penetrator. Durimetru conform invenţiei este alcătuit dintr-o parte mecanică şi o parte electronică, partea mecanică având rol de solicitare a materialului încercat şi fiind compusă dintr-un echipament mobil, format, la rândul lui, dintr-un penetrator (3) sferic din carbură de wolfram, un portpenetrator (4), un senzor (5) de forţă piezoelectric, un pendul orizontal constând dintr-o pârghie (6) articulată cu un rulment (7) şi un sistem (8 şi 9) de încărcare-descărcare cu camă, partea electronică având rol de prelucrare a semnalului şi de afişare a rezultatelor, fiind compusă dintr-un microcontroler programat, o sursă de alimentare şi un display (14) alfa-numeric, iar pentru determinarea valorii durităţii (HD) dinamice, senzorul (5) de forţă piezoelectric dinamic, inserat în fluxul de solicitare, furnizează semnale electrice de tensiune microcontrolerului, acesta calculând valoarea durităţii (HD) dinamice din raportul valorii semnalului (U2) de tensiune după al doilea impact şi valorii semnalului (U1) de tensiune după primul impact, înmulţit cu o constantă (K), figura 1.

Abstract

The invention relates to a portable electronic hardness-testing device with piezoelectric sensor, meant to determine the dynamic hardness by the free fall of a pendulum having a penetrator at one end. According to the invention, the hardness-testing device comprises a mechanical unit and an electronic unit, the mechanical unit having the function of subjecting the material to be tested to a certain strain and comprising a mobile equipment which, in its turn, consists of a sphere-shaped penetrator (3) made of wolfram carbide, a penetrator holder (4), a piezoelectric force sensor (5) a horizontal pendulum consisting of a lever (6) articulated with a bearing (7) and a loading-unloading cam system (8 and 9), while the electronic unit has the function of processing the signal and displaying the results, comprises a programmed micro-controller, a supply source and an alpha-numeric display (14); and in order to determine the value of the dynamic hardness (HD), the piezoelectric dynamic force sensor (5), inserted into the strain flow, provides electric voltage signals to the micro-controller which calculates the dynamic hardness value (HD), based on the ratio between the value of the voltage signal (U2) after the second impact and the value of the voltage signal (U1) after the first impact, multiplied by a constant value (K), figure 1.

Fig. 1.
Rezumat

Invenția se referă la un durimetru portabil, cu sarcină dinamică, cu impact, destinat încercării materialelor metalice. Durimetru conform invenției este compus dintr-un tub de lansare (1) și un echipament mobil (2), care are, la partea inferioară, un penetrator (3) sfēric, realizat din carbură de wolfram, care provoacă la impact deformarea unui material (14) supus încercării, sub formă de calotă sfērică, două înele toroidale (i1 și i2) de ghidare, prevăzute cu niște canale transversale, asigură o frecare redusă și elimină aerul în timpul cursei directe și a celei de recul, energia cinetică pentru impact fiind realizată prin propulsia echipamentului mobil pe cale electromagnetică, printr-o bobină (4) exterioară și concentrică tubului de lansare, prin care se descarcă brusc un condensator (20) al sursei de alimentare, la închiderea unui întrerupător (8), în deplasarea sa spre materialul încercat, precum și după reculul elastic de pe acesta, echipamentul mobil pornind, respectiv, oprind prin niște fotobariere (9, 11 și 10, 12), un numărător (19) electronic, pe baza numărului de impulsuri fiind calculată în unitatea (18) centrală viteza echipamentului mobil la ducere și la întoarcere, iar din viteza și din masa echipamentului (2) mobil fiind determinată energia cinetică de impact și energia cinetică de recul elastic, figura 1.

Abstract

The invention relates to a portable dynamic charge device for testing hardness upon impact, employed for testing metallic materials. According to the invention, the hardness testing device comprises a launching tube (1) and a mobile equipment (2), having at its lower part a mobile sphere-shaped penetrator (3) made of wolfram carbide, which, upon impact causes deformation of a material (14) to be tested, in the shape of a sphere cap, two toroidal guiding rings (i1 and i2), provided with some cross channels, ensuring reduced friction and air removal during the direct stroke and the recoil stroke, the impact kinetic energy being obtained by propelling the mobile equipment by electromagnetic means, by an external coil (4) concentric with the launching tube, where through a capacitor (20) of the supply source suddenly discharges upon closing a switch (8), in its travel towards the material to be tested and the elastic recoil there from, the mobile equipment being started and stopped, respectively, by means of some photo-barriers (9, 11 and 10, 12), an electronic counter (19), the central unit (18) calculating, based on the number of pulses, the speed of the mobile equipment, both in the forward and in the backward stroke, and based on the speed and mass of the mobile equipment (2), the impact kinetic energy and the elastic recoil energy, figure 1.
Rezumat

Invenția se referă la un durimetru electronic, cu arc electronic portabil, fără frecare, destinat determinării durității dinamice, în regim de impact, exprimarea durității dinamice făcându-se prin raportul dintre energia de recul elastic și energia de impact, cele două energii fiind măsurate cu un senzor inductiv diferențial. Durimetru conform invenției este compus dintr-un penetrator (2) sferic, realizat din carbură de wolfram, un portpenetrator (3), un arc (4) lamelar, pentru asigurarea energiei de impact cu materialul (9) de încercat, un electromagnetic (5) pentru pretensionarea elastică a arcului (4), un senzor inductiv diferențial, format dintr-o bobină (6) și un miez (7) mobil, pentru punerea în evidență a energiei de impact și a energiei de recul elastic, sub forma unor semnale de tensiune proporționale cu aceste energii, și o unitate (12) centrală, pentru prelucrarea semnalelor și afișarea electronică a rezultatelor, figura 1.

Dynamic hardness testing spring device

Abstract

The invention relates to an electronic hardness-testing device with portable electronic spring, employed for determining the dynamic impact hardness, the dynamic hardness being expressed as the ratio between the elastic recoil energy and the impact energy, the two energies being measured by a differential induction sensor. According to the invention, the hardness testing device comprises a sphere-shaped penetrator (2) made of wolfram carbide, a penetrator holder (3), a leaf spring (4) to ensure the energy of impact with the material (9) to be tested, an electromagnetic (5) for resiliently pre-tensioning the spring (4), a differential induction sensor comprising a coil (6) and a mobile core (7), to point out the impact energy and the elastic recoil energy as signals in proportion to the said energies, and a central unit (12) to process the signals and electronically display the results, figure 1.
105. BREVET RO122602 / 2009
Aparat pentru determinarea ductilității depunerilor galvanice la temperaturi ridicate

Autori: Gutt Gheorghe; Gutt Sonia
Clasificare internațională: G01N21/01; G01N3/28
Prioritate: RO20070000713 20071011

Rezumat

Invenția se referă la un aparat pentru determinarea ductilității depunerilor galvanice la temperaturi ridicate, prin sesizarea automată a apariției fisurii la limita rezistenței la rupere a depozitului galvanic, urmată de calculul automat al ductilității depozitului galvanic. Aparatul conform învenției cuprinde un sistem (1) de încălzire electrică a probei metalice de încercat, formată dintr-un substrat metalic plan și un depozit (2) galvanic, un penetrator (3) sferic, pentru solicitarea la deformare a probei dinspre substrat spre depozitul galvanic, și un sistem optoelectronice de achiziție și prelucrare de imagine, compus dintr-o lentilă (4) colimatoare reglabilă, o fibră (5) optică având trifurcație, echipată pe o ramură (a) cu un filtru (6) de radiație infraroșie și un convertor optoelectronice de semnal, cu afișarea digitală a temperaturii unei zone (7) de deformare, pe o altă ramură (b), cu un sistem (8) video de urmărire a deformării structurii metalografice și un monitor (9) de afișare a imaginii structurii microscopic deformate, și pe o ultimă ramură (c), cu un sistem (10) de urmărire a suprafeței deformate a probei, cu zoom electronic pe zona centrală a imaginii, pentru sesizarea apariției fisurii, și un monitor (11) de afișare a imaginii zonei centrale deformate pe toată perioada solicitării depunerii galvanice, precum și cu un senzor (12) optoelectronic de deplasare, pentru determinarea lungimii deplasării penetratorului (3), folosită la calculul valorii ductilității depozitului (2) galvanic, figura 1.

PATENT RO122602 / 2009
Apparatus for determining the ductility of galvanic deposits at high temperatures

Abstract

The invention relates to an apparatus for determining the ductility of galvanic deposits at high temperatures, by the automatic detection of crack occurrence upon the rupture limit of the galvanic deposit, followed by the automatic calculation of the ductility thereof. According to the invention, the apparatus comprises a system (1) for the electric heating of the metal sample to be tested, comprising a flat metal substrate and a galvanic deposit (2), a sphere-shaped penetrator (3) for the deformation strain of the sample from the substrate to the galvanic deposit and an optic-electronic system for image acquisition and processing, comprising an adjustable collimating lens (4), a triple-branched optical fibre (5) provided on one branch (a) with an infrared filter (6) and an optic-electronic signal converter with digital display of the temperature of a deformation zone (7), on another branch (b) with a video system (8) tracking the metallographic structure deformation and a monitor (9) for displaying the image of the deformed microscopic structure, and on a last branch (c) with a system (10) tracking the deformed sample surface, with electronic zoom in the central area of the image to detect the crack occurrence, and a monitor (11) for displaying the image of the deformed central zone during the whole period of galvanic deposit strain, as well as with an optic-electronic displacement detector (12) to determine the length of the penetrator displacement, meant to be used in the calculation of the ductility value of the galvanic deposit (2), figure 1.

Fig. 1.
Rezumat

Invenția se referă la un ciocan electromagnetic portabil, cu lovire și rearmare automată, destinat obținerii unor energii de lovire cu o valoare determinată, folosită pentru determinarea valorii durății dinamice, exprimată ca raport între valoarea energiei cinetice de impact și valoarea ariei suprafeței urmei lăsate de un penetrator sferic, realizat din carbură de wolfram, pe materialul încercat. Ciocanul conform invenției conține o sondă (10) cilindrică portabilă, o parte electronică de achiziție, procesare și afișare a datelor, și un sistem electromagnetic de propulsie, acesta din urmă fiind format dintr-o bobină (6), un tub (1) de ghidare și un echipament (3) mobil, care are, la partea sa inferioară, un penetrator (2) sferic, din carbură de wolfram, la partea superioară fiind dispusă o fotobarieră (7 și 8) care comandă un cronometru electronic, calcularea energiei cinetice la impact a echipamentului mobil făcându-se automat de către un controller, din valoarea unei distanțe (d) dintre cele două zone de obturare ale echipamentului mobil, din valoarea timpului (t) dat de cronometrul electronic și din valoarea energiei de impact, valoarea energiei consumate pentru comprimarea elastică a unui arc (5) de rearmare în timpul cursei de lovire, figura 1.

Abstract

The invention relates to a portable electromagnetic hammer with automatic strike and reset, meant to provide striking energy of a predetermined value, employed in determining the dynamic hardness value expressed as a ratio between the impact kinetic energy value and the value of the surface area of the impression of a sphere-shaped penetrator made of wolfram carbide on the tested material. According to the invention, the hammer contains a cylindrical portable probe (10), an electronic unit for data acquisition, processing and display and an electromagnetic propelling system consisting of a coil (6), a guiding tube (1) and a mobile equipment (3) having at its lower part a sphere-shaped penetrator (2) made of wolfram carbide, while at its upper part there is placed a photobarrier (7 and 8) controlling an electronic timer, the impact kinetic energy of the mobile equipment being automatically calculated by a controller, based on the value of a distance (d) between the two mobile equipment obturation areas, the value of time (t) given by the electronic timer and the value of the impact energy, as well as the value of the energy consumed to resiliently compress a reset spring during the striking travel, figure 1.
Sistem de analiză spectroscopică, microscopică și termografică

Rezumat

Invenția se referă la un sistem de analiză pentru analizarea spectroscopică, microscopică și termografică a unui metal sau a unui aliaj metallic în domeniul UV-VIS-IR, pentru stabilirea compoziției chimice calitative și cantitative a stratului superficial, a studierii segregării elementelor chimice și a oxidării în stratul superficial, precum și a stabilirii structurii metalografice microscopic în funcție de temperatură. Sistemu de analiză, conform invenției, este constituit dintr-un microscop (1) metalografic, echipat cu un dispozitiv (2) de încălzire electrorezistivă progresivă a unei probe (3) supuse analizării, un sistem (4) de răceire a unui obiectiv (5) optic al microscopului (1), o fibră (6) optică cu trifurcație, un spectroskop (7) miniatural UV-VIS, prevăzut cu o rețea de difracție, un detector Diode-Array și program de calculato dedicat pentru analizarea spectrală calitativă și cantitativă, ce valorifică semnalul optic de pe ramura (a) a fibrei (6) din sticlă, un sistem (9) optoelectronic cu cameră CCD miniaturală, de înaltă rezoluție, ce transformă informația de pe o ramură (b) a fibrei (6) optică în semnal video, un sistem (11) optoelectronic de conversie a componentei infraroșii a semnalului de pe o ramură (c) a fibrei (6) optică în unități de temperatură, figura 1.

System for spectroscopic, microscopic and thermographic analysis

Abstract

The invention relates to a system for the spectroscopic, microscopic and thermograph analysis of a metal or metal alloy in the range UV-VIS-IR, with a view to determining the chemical composition of the surface layer, both from the quality and quantity points of view, to studying the segregation of chemical elements and oxidation in the surface layer, as well as to determining the microscopic metallographic structure depending on temperature. According to the invention, the system comprises a metallographic microscope (1) provided with a device (2) for the progressive electroresistive heating of a sample (3) to be analyzed, a system (4) for cooling an optical objective (5) of the microscope (1), a three-way branched optical fibre (6), a miniaturized UV-VIS spectroscopes (7) provided with a diffract grating, a Diode-Array detector and a computer program dedicated to the spectral qualitative and quantitative analysis, using the optical signal on the branch (a) of the glass fibre (6), an optic-electronic system (9) with high definition CCD camera converting the information from a branch (b) of the optical fibre (6) into video signal, an optic-electronic system (11) for the conversion of the infrared component of the signal from a branch (c) of the optical fiber (6) into temperature units, figure 1.
Rezumat

Invenția se referă la un sistem complex, destinat analizei gazcromatografice moleculare și analizei spectrometrice elementare, efectuate concomitent, pentru un amestec de gaze. Sistemul conform invenției este constituit dintr-un gazcromatograf (1) echipat cu un detector (2) de ionizare, având o structură modulară, formată dintr-o sondă (3) spectrometrică de transmisie, compusă dintr-o lentilă (5) din sticlă de cuarț și o fibră (6) optică de transmisie, montate perpendicular pe direcția de ardere a flăcării (4) de hidrogen a detectorului (2), dintr-un spectrometru (7) miniaturizat compact, echipat cu rețea de difracție fixă, detector Diode-Array, un soft pentru prelucrare informației spectrale de emisie atomică, precum și dintr-un sistem (8) de procesare, afișare și tipărire spectre, figura 1.

System for analyzing a gas mixture
by gas chromatography and spectrometry

Abstract

The invention relates to a complex system meant for simultaneously analyzing a gas mixture by molecular gas chromatography and basic spectrometry. According to the invention, the system comprises a gas chromatograph (1) provided with an ionizing detector (2) having a modular structure which comprises a spectrometric transmission probe (3) consisting of a quartz glass lens (5) and a transmission optic fibre (6) which are mounted perpendicular to the burning direction of the hydrogen flame (4) of said detector (2), a miniaturized compact spectrometer (7) provided with fixed diffraction grating, Diode-Array detector, software for processing atomic emission spectral information, as well as a system (8) for spectra processing, displaying and printing, figure 1.
Rezumat

Invenția se referă la un analizor optic destinat aplicațiilor electrochimice, în special a celor din domeniul depunerilor galvanice pe un catod al unei celule galvanice, precum și asupra morfologiei dimensiunii și creșterii dimensionale a grăunților cristalini depuși pe catod. Analizorul optic, conform invenției, este compus dintr-o sursă (1) de radiație policromatică, două fibre optică cu bifurcări, prima ramură a primei fibre (2) optice cu bifurcare având rolul de iradiere a unui catod (3) printr-o lentilă (4) colimatoare, cealaltă ramură având rolul de preluare a informației sub formă de radiație reflectată de pe catod (3), cea de-a doua fibră (5) optică cu bifurcare realizând, pe prima ramură, transmiterea informației optice preluate spre un canal (6) de analiză microscopică, echipat cu cameră (CCD) și program de calculator destinat analizei optoelectronice a imaginii microscopice, iar pe a doua ramură, transmiterea informației optice spre un spectroscop (7) UV-VIS, prevăzut cu rețea de difracție, detector Diode-Array și un program de calculator de analiză automată a spectrelor, după care rezultatul se valorifică sub forma unor spectrograme (8) succesive, ce reflectă, în timp real, evoluția compoziției și concentrației electrolitului din imediata vecinătate a catodului (3), corelată cu o succesiune corespunzătoare de imagini (9) video a structurii microscopic a germenilor cristalini care se formează pe catod (3) ca urmare a depunerii electrochimice a metalului sau aliajului metalic, figura 1.

PATENT RO122611 / 2009

Electrochemical optical analyser

The invention relates to an optical analyser meant for electrochemical applications, especially for applications in the field of galvanic deposition on a cathode of a galvanic cell, as well as of the morphology of size and growth of crystal grains deposited on the cathode. According to the invention, the optical analyser comprises a polychromatic radiation source (1), two branching optical fibres, the first branch of the first branching optical fibre (2) having the function of irradiating a cathode (3) through a collimating lens (4), the other branch having the function of taking over the information as reflected radiation from the cathode (3), while the second branching optical fibre (5) achieves, on the first branch, the transmission of the optical information taken over towards a microscopic analysis channel (6) provided with a camera (CCD); and a computer program meant for the optic-electronic analysis of the microscopic image, and on the second branch, the transmission of optical information to a UV-VIS spectroscope (7) provided with a diffraction grating, Diode-Array detector and a computer program for the automatic spectral analysis, the results being then used as successive spectrograms (8) reflecting in real time the evolution of the composition and concentration of the electrolyte in the close vicinity of the cathode (3) correlated with a corresponding series of video images (9) of the microscopic structure of crystal nuclei formed on the cathode (3) as a consequence of the electrochemical deposition of metal or metal alloy, figure 1.
114

110. BREVET RO122599 / 2009
Analizor biologic spectroscopic şi microscopic

Autori: Gutt Sonia
Clasificarea internaţională: G01J3/28; G01N21/27; G01N21/31; G01N33/487; G02B21/00
Prioritate: RO2007000708 20071011

Rezumat
Invenţia se referă la un analizor biologic, spectroscopic şi microscopic, prin transmisia sau reflexia radiaţiei, folosit la determinarea concomitentă, în acelaşi loc şi în acelaşi timp, a compoziţiei chimice şi a structurii microscopice a unei probe biologice transparente sau opace. În acest scop este folosit un analizor compus dintr-o sursă de radiaţie policromatică (1), o fibră optică (2) de iradiere, un microscop (3) de transmisie sau un microscop optic (4) de reflexie, sau un stereomicroscop optic (5), o fibră optică (6) cu bifurcare, pentru preluarea radiaţiei transmise sau reflectate de proba analizată, şi transmiterea acesteia către sistemul de analiză spectrală şi către sistemul de analiză microscopică, formate, la rândul lor, dintr-un spectrometru (7) miniatural, echipat cu detector Diode-Array, cu soft de analiză automată a spectrelor, şi periferic (8), de vizualizare şi tipărire spectre, precum şi dintr-un sistem (9) de analiză video, echipat cu detector CCD, soft specific şi periferic (10), de vizualizare şi tipărire a imaginii structurii microscopice, figura 1.

PATENT RO122599 / 2009
Biological spectroscopic and microscopic analyzer

Abstract
The invention relates to a biological spectroscopic and microscopic analyzer by radiation transmission or reflection, meant to be used for simultaneously determining, in the same place and time, the chemical composition and the microscopic structure of a transparent or opaque biological sample. For this purpose, there is employed an analyzer comprising a polychromatic radiation source (1), an irradiation optical fibre (2), a transmission microscope (3) or an optical reflection microscope (4) or an optical stereoscope (5), a branched optical fibre (6) to take over the radiation transmitted or reflected by the analyzed sample and transmit the same to the spectral analysis and the microscopic analysis systems, which, in their turn, comprise a miniaturized spectrometer (7) provided with a Diode Array detector, with software for the automatic specter analysis and peripherals (8); for specters viewing and printing, and a video analysis system (9) provided with a CCD detector, specific software and peripherals (10) for viewing and printing microscopic structures, figure 1.

Fig. 1.
Sondă fotometrică

Resumat

Invenția se referă la o sondă fotometrică, destinată determinării rapide, prin fotometrare online și în timp real, a limitelor maxime a concentrației unei soluții de analizat, la care dependența între absorbanță și concentrație este încă liniară, și este destinată pentru determinarea concomitentă a condițiilor pentru atingerea sensibilității maxime a metodei de măsurare fotometrică, precum și pentru studiul influenței diverselor mărimi și parametri de proces asupra concentrației limită de liniaritate. Sonda conform invenției este compusă dintr-un șir de diode ($I_1 - I_n$) laser emițătoare, acordate toate pe aceeași lungime de undă, și un șir de fotodiode ($f_1 - f_n$) receptor, diodele ($I_1 - I_n$) laser emițătoare formând cu fotodiodele ($f_1 - f_n$) receptor corespunzătoare niște canale ($b_1 - b_n$) optice, care au lungimile bine determinate, dar diferite de la o pereche de diode ($I_1 - I_n$) la alta, superior fiind plasată o tijă (3) de fixare și suspendare, și care este legată printr-un cablu (4) electric flexibil, de o unitate (5) electronică portabilă, prevăzută cu un program dedicat, specializat pentru achiziția, procesarea și afișarea datelor, figura 1.

Photometric probe

Abstract

The invention relates to a photometric probe meant for the quick determination by real time on-line photometry the maximal limit of concentration of a solution to be analyzed, where the dependence between absorbing capacity and concentration is still linear, and it is meant to simultaneously establish the conditions for reaching the maximal sensitivity of the photometric measuring method and to study the influence of various process values and parameters on the linearity limit concentration. According to the invention, the probe comprises a row of laser emitting diodes ($I_1 - I_n$) tuned on the same wave length and a row of photo receiving diodes ($f_1 - f_n$), the laser emitting diodes ($I_1 - I_n$) forming with the corresponding photo receiving diodes ($f_1 - f_n$) some optical channels ($b_1 - b_n$) of well established lengths which differ from a diode pair ($I_1 - I_n$) to another one, in the upper plane there being placed a fixing and suspending rod (3) connected by a flexible electric cable (4) to a portable electronic unit (5) provided with a data acquisition, processing and display dedicated program, figure 1.
Rezumat

Invenția se referă la un spectrofotometru miniatural de tip sondă multicanal, care furnizează, pentru una sau mai multe specii moleculare sau atomice, semnale electrice proporționale cu concentrațiile și compozițiile acestora.

Spectrofotometrul conform invenției este compus dintr-o unitate (1) perfect etanșă și rezistentă la coroziune, prevăzută cu o fereastră (2) verticală, deschisă, pe pereții verticalli ai acesteia găsindu-se mai multe canale (c₁-cₙ), fiecare dintre aceste canale (c₁-cₙ) fiind format dintr-o diodă (3) laser, emițătoare de radiație monocromatică, având lungimea de undă corespunzătoare maximului de absorbție, pentru o anumită specie moleculară sau atomică, și o fotodiodă (4) receptoare, situată la o distanță (b) determinată față de o diodă (5) emițătoare, electronică, de amplificare și de interfațare, fiind situată în partea superioară a unității (1), alimentarea cu energie electrică fiind făcută de la un laptop (6) sau calculator, printr-o sursă și un cablu (7) USB ale acestuia, figura 1.

Abstract

The invention relates to a miniaturized spectrophotometer of the multi-channel probe type providing, for one or several molecular or atomic species, electric signals proportional to the concentrations and compositions thereof. According to the invention, the spectrophotometer comprises a perfectly sealed and corrosion-resistant unit (1) provided with a vertical open window (2), on the vertical walls thereof there being several channels (c₁ - cₙ), each of them comprising a laser diode (3) emitting monochromatic radiation whose wave length corresponds to the maximal absorption value for a given molecular or atomic species, and a receiving photo diode (4) placed at a preset distance (b) from an electronic amplification and interface emitting diode (5), which is located at the top part of the unit (1), the power supply being ensured from a laptop (6) or desktop computer, through a source and a USB cable (7) thereof, figure 1.
Rezumat

Invenția se referă la un aparat pentru încercarea și caracterizarea materialelor metalice și nemetalice, în regim de solicitare dinamică, cu impact. Aparatul conform invenției este de tip portabil și se compune dintr-o sondă și o parte electronică, sonda fiind formată dintr-un echipament (P) mobil, compus, la rândul său, dintr-un penetrator (1) sféric, realizat din carbură de wolfram, un senzor (2) piezoelectric, de forță dinamică, o contragreutate (3), o bobină (4), un arc (5) disc, un tub (6) de lansare cu frecare mică, un magnet (7) continuu, obținut prin sinterizare, și o bobină (8) exteroară, partea electronică fiind legată, printr-un cablu flexibil, de sondă și fiind compusă dintr-un sistem de înmagazinare de energie, care conține o sursă electrică, un condensator (C) și un întrerupător (K), o fotobarieră (10 și 11), un numărător (12) electronic, o bobină (13) și o unitate (14) centrală de procesare a semnalelor, la impact, semnalul senzorului (2) piezoelectric fiind radiator electromagnetic de bobina (4) interioară, spre bobina (8) exteroară, montată pe tubul (6) de lansare, iar valoarea energiei cinetice la impact, calculată din viteză echipamentului (P) mobil, din masa acestuia, precum și din mărimea și configurația semnalului senzorului piezoelectric, este determinată cu un program dedicat mărimii caracteristice importante de material, figura 1.

PATENT RO122604 / 2009
Apparatus for the dynamic testing of materials

The invention relates to an apparatus for the dynamic impact testing and characterization of metal and non-metal materials. According to the invention, the apparatus is a portable one, consisting of a probe and an electronic unit, the probe comprising a mobile equipment (P) which, in its turn, consists of a sphere-shaped penetrator (1) made of wolfram carbide, a piezoelectric dynamic force sensor (2), a counter-weight (3), a coil (4), a disc-shaped spring (5), a launching tube (6) with reduced friction, a continuous magnet (7) made by sintering, and an external coil (8), the electronic unit being connected to the probe by a flexible cable and consisting of an energy storing system comprising an electric source, a capacitor (C) and a switch (K), a photobARRIER (10 and 11), an electronic counter (12), a coil (13) and a central signal processing unit (14), upon impact, the signal of the piezoelectric sensor (2) being electromagnetically radiated by the internal coil (4) to the external coil (8) mounted on the launching tube (6), the value of the impact kinetic energy, calculated based on the speed of the mobile equipment (P), the mass thereof as well as the value and configuration of the signal of the piezoelectric sensor, being determined by a dedicated program concerning the material important characteristic value, figure 1.